用户名: 密码: 验证码:
Cardiac Fas-Dependent and Mitochondria-Dependent Apoptotic Pathways in a Transgenic Mouse Model of Huntington's Disease
详细信息    查看全文
  • 作者:Bor-Tsang Wu ; Ming-Chang Chiang ; Ching-Yi Tasi ; Chia-Hua Kuo
  • 关键词:Apoptosis ; Caspase ; Heart ; Huntington’s disease
  • 刊名:Cardiovascular Toxicology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:16
  • 期:2
  • 页码:111-121
  • 全文大小:1,430 KB
  • 参考文献:1.Lanska, D. J., Lavine, L., Lanska, M. J., & Schoenberg, B. S. (1988). Huntington’s disease mortality in the United States. Neurology, 38, 769–772.CrossRef PubMed
    2.The Huntington’s Disease Collaborative Research Group (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983.CrossRef
    3.Perutz, M. F. (1999). Glutamine repeats and neurodegenerative diseases: Molecular aspects. Trends in Biochemical Sciences, 24, 58–63.CrossRef PubMed
    4.Chiu, E., & Alexander, L. (1982). Causes of death in Huntington’s disease. Medical Journal of Australia, 1, 153.PubMed
    5.Schroeder, A. M., Loh, D. H., Jordan, M. C., Roos, K. P., & Colwell, C. S. (2011). Baroreceptor reflex dysfunction in the BACHD mouse model of Huntington’s disease. PLoS Currents, 3, RRN1266.CrossRef PubMed PubMedCentral
    6.Kiriazis, H., Jennings, N. L., Davern, P., Lambert, G., Su, Y., Pang, T., et al. (2012). Neurocardiac dysregulation and neurogenic arrhythmias in a transgenic mouse model of Huntington’s disease. The Journal of Physiology, 590, 5845–5860.CrossRef PubMed PubMedCentral
    7.Sathasivam, K., Hobbs, C., Turmaine, M., Mangiarini, L., Mahal, A., Bertaux, F., et al. (1999). Formation of polyglutamine inclusions in non-CNS tissue. Human Molecular Genetics, 8, 813–822.CrossRef PubMed
    8.Pattison, J. S., Sanbe, A., Maloyan, A., Osinska, H., Klevitsky, R., & Robbins, J. (2008). Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation, 117, 2743–2751.CrossRef PubMed PubMedCentral
    9.Pattison, J. S., & Robbins, J. (2008). Protein misfolding and cardiac disease: Establishing cause and effect. Autophagy, 4, 821–823.CrossRef PubMed PubMedCentral
    10.Melkani, G. C., Trujillo, A. S., Ramos, R., Bodmer, R., Bernstein, S. I., & Ocorr, K. (2013). Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLoS Genetics, 9, e1004024.CrossRef PubMed PubMedCentral
    11.Wood, N. I., Sawiak, S. J., Buonincontri, G., Niu, Y., Kane, A. D., Carpenter, T. A., et al. (2012). Direct evidence of progressive cardiac dysfunction in a transgenic mouse model of Huntington’s disease. Journal of Huntington’s Disease, 1, 57–64.PubMed
    12.Buonincontri, G., Wood, N. I., Puttick, S. G., Ward, A. O., Carpenter, T. A., Sawiak, S. J., & Morton, A. J. (2014). Right ventricular dysfunction in the R6/2 transgenic mouse model of Huntington’s disease is unmasked by dobutamine. Journal of Huntington’s Disease, 3, 25–32.PubMed PubMedCentral
    13.Mihm, M. J., Amann, D. M., Schanbacher, B. L., Altschuld, R. A., Bauer, J. A., & Hoyt, K. R. (2007). Cardiac dysfunction in the R6/2 mouse model of Huntington’s disease. Neurobiology of Disease, 25, 297–308.CrossRef PubMed PubMedCentral
    14.Bishopric, N. H., Andreka, P., Slepak, T., & Webster, K. A. (2001). Molecular mechanisms of apoptosis in the cardiac myocyte. Current Opinion in Pharmacology, 1, 141–150.CrossRef PubMed
    15.Kubasiak, L. A., Hernandez, O. M., Bishopric, N. H., & Webster, K. A. (2002). Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proceedings of the National Academy of Sciences of the United States of America, 99, 12825–12830.CrossRef PubMed PubMedCentral
    16.Brown, G. C., & Borutaite, V. (1999). Nitric oxide, cytochrome c and mitochondria. Biochemical Society Symposia, 66, 17–25.CrossRef
    17.Bang, S., Jeong, E. J., Kim, I. K., Jung, Y. K., & Kim, K. S. (2000). Fas-and tumor necrosis factor-mediated apoptosis uses the same binding surface of FADD to trigger signal transduction. A typical model for convergent signal transduction. Journal of Biological Chemistry, 275, 36217–36222.CrossRef PubMed
    18.Barnhart, B. C., Alappat, E. C., & Peter, M. E. (2003). The CD95 type I/type II model. Seminars in Immunology, 15, 185–193.CrossRef PubMed
    19.Jeremias, I., Stahnke, K., & Debatin, K. M. (2005). CD95/Apo-1/Fas: Independent cell death induced by doxorubicin in normal cultured cardiomyocytes. Cancer Immunology, Immunotherapy, 54, 655–662.CrossRef PubMed
    20.Aggarwal, B. B., Bhardwaj, U., & Takada, Y. (2004). Regulation of TRAIL-induced apoptosis by ectopic expression of antiapoptotic factors. Vitamins and Hormones, 67, 453–483.CrossRef PubMed
    21.Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., et al. (1999). Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. Journal of Biological Chemistry, 274, 1156–1163.CrossRef PubMed
    22.Chiang, M. C., Chen, C. M., Lee, M. R., Chen, H. W., Chen, H. M., Wu, Y. S., et al. (2010). Modulation of energy deficiency in Huntington’s disease via activation of the peroxisome proliferator-activated receptor gamma. Human Molecular Genetics, 19, 4043–4058.CrossRef PubMed
    23.Chou, S. Y., Lee, Y. C., Chen, H. M., Chiang, M. C., Lai, H. L., Chang, H. H., et al. (2005). CGS21680 attenuates symptoms of Huntington’s disease in a transgenic mouse model. Journal of Neurochemistry, 93, 310–320.CrossRef PubMed
    24.Mielcarek, M., Inuabasi, L., Bondulich, M. K., Muller, T., Osborne, G. F., Franklin, S. A., et al. (2014). Dysfunction of the CNS-heart axis in mouse models of Huntington’s disease. PLoS Genetics, 10, e1004550.CrossRef PubMed PubMedCentral
    25.Olmesdahl, P. J., Gregory, M. A., & Cameron, E. W. (1979). Ultrastructural artefacts in biopsied normal myocardium and their relevance to myocardial biopsy in man. Thorax, 34, 82–90.CrossRef PubMed PubMedCentral
    26.Bates, G. P., Mangiarini, L., Mahal, A., & Davies, S. W. (1997). Transgenic models of Huntington’s disease. Human Molecular Genetics, 6, 1633–1637.CrossRef PubMed
    27.Nagai, Y., Inui, T., Popiel, H. A., Fujikake, N., Hasegawa, K., Urade, Y., et al. (2007). A toxic monomeric conformer of the polyglutamine protein. Nature Structural and Molecular Biology, 14, 332–340.CrossRef PubMed
    28.Zhang, Q. C., Yeh, T. L., Leyva, A., Frank, L. G., Miller, J., Kim, Y. E., et al. (2011). A compact beta model of huntingtin toxicity. The Journal of Biological Chemistry, 286, 8188–8196.CrossRef PubMed PubMedCentral
    29.Takahashi, T., Kikuchi, S., Katada, S., Nagai, Y., Nishizawa, M., & Onodera, O. (2008). Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Human Molecular Genetics, 17, 345–356.CrossRef PubMed
    30.Hsiao, H. Y., Chiu, F. L., Chen, C. M., Wu, Y. R., Chen, H. M., Chen, Y. C., et al. (2014). Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease. Human Molecular Genetics, 23, 4328–4344.CrossRef PubMed
    31.Luo, S., & Rubinsztein, D. C. (2009). Huntingtin promotes cell survival by preventing Pak2 cleavage. Journal of Cell Science, 122, 875–885.CrossRef PubMed PubMedCentral
    32.Zhang, Y., Leavitt, B. R., van Raamsdonk, J. M., Dragatsis, I., Goldowitz, D., MacDonald, M. E., et al. (2006). Huntingtin inhibits caspase-3 activation. The EMBO Journal, 25, 5896–5906.CrossRef PubMed PubMedCentral
    33.Shirendeb, U. P., Calkins, M. J., Manczak, M., Anekonda, V., Dufour, B., McBride, J. L., et al. (2012). Mutant huntingtin’s interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington’s disease. Human Molecular Genetics, 21, 406–420.CrossRef PubMed PubMedCentral
    34.Li, S. H., Lam, S., Cheng, A. L., & Li, X. J. (2000). Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Human Molecular Genetics, 9, 2859–2867.CrossRef PubMed
    35.Zuccato, C., Valenza, M., & Cattaneo, E. (2010). Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiological Reviews, 90, 905–981.CrossRef PubMed
  • 作者单位:Bor-Tsang Wu (1)
    Ming-Chang Chiang (2)
    Ching-Yi Tasi (1)
    Chia-Hua Kuo (3)
    Woei-Cherng Shyu (4) (5) (6)
    Chung-Lan Kao (7) (8)
    Chih-Yang Huang (10) (11) (9)
    Shin-Da Lee (1) (12)

    1. Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
    2. Department of Life Science, Fu Jen Catholic University, New Taipei City, 242, Taiwan
    3. Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei, Taiwan
    4. Translational Medicine Research Center, China Medical University Hospital, Taichung, 40447, Taiwan
    5. Graduate Institute of Immunology, China Medical University, Taichung, 40202, Taiwan
    6. Department of Neurology, Center for Neuropsychiatry, China Medical University Hospital, Taichung, 40447, Taiwan
    7. Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
    8. School of Medicine, National Yang-Ming University, Taipei, Taiwan
    10. Institute of Medical Science, China Medical University, Taichung, 40402, Taiwan
    11. Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
    9. Graduate Institute of Chinese Medical Science, China Medical University, Taichung, 40202, Taiwan
    12. Department of Healthcare Administration, Asia University, Taichung, 41354, Taiwan
  • 刊物主题:Pharmacology/Toxicology; Cardiology;
  • 出版者:Springer US
  • ISSN:1559-0259
文摘
Huntington’s disease is an autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the huntingtin gene. Heart disease is the second leading cause of death in patients with Huntington’s disease. This study was to evaluate whether cardiac Fas-dependent and mitochondria-dependent apoptotic pathways are activated in transgenic mice with Huntington’s disease. Sixteen Huntington’s disease transgenic mice (HD) and sixteen wild-type (WT) littermates were studied at 10.5 weeks of age. The cardiac characteristics, myocardial architecture, and two major apoptotic pathways in the excised left ventricle from mice were measured by histopathological analysis, Western blotting, and TUNEL assays. The whole heart weight and the left ventricular weight decreased significantly in the HD group, as compared to the WT group. Abnormal myocardial architecture, enlarged interstitial spaces, and more cardiac TUNEL-positive cells were observed in the HD group. The key components of Fas-dependent apoptosis (TNF-alpha, TNFR1, Fas ligand, Fas death receptors, FADD, activated caspase-8, and activated caspase-3) and the key components of mitochondria-dependent apoptosis (Bax, Bax-to-Bcl-2 ratio, cytosolic cytochrome c, activated caspase-9, and activated caspase-3) increased significantly in the hearts of the HD group. Cardiac Fas-dependent and mitochondria-dependent apoptotic pathways were activated in transgenic mice with Huntington’s disease, which might provide one of possible mechanisms to explain why patients with Huntington’s disease will develop heart failure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700