用户名: 密码: 验证码:
Dynamic and Quantitative Method of Analyzing Clock Inconsistency Factors among Distributed Nodes
详细信息    查看全文
  • 作者:Xiangning Shi (1)
    Linjun Fan (2)
    Yunxiang Ling (2) (3)
    Jing He (2)
    Dehui Xiong (2)

    1. School of Computer and Information Engineering
    ; Hunan University of Commerce ; Changsha ; 410205 ; China
    2. Department of Management Science and Engineering
    ; Officers College of Chinese Armed Police Force ; Chengdu ; 610213 ; China
    3. Science and Technology on Information Systems Engineering Laboratory
    ; National University of Defense Technology ; Changsha ; 410073 ; China
  • 关键词:Clock inconsistency evolution ; Factor quantification analysis ; Finite state automata ; Distributed sensor nodes ; Internet of thing
  • 刊名:Arabian Journal for Science and Engineering
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:40
  • 期:2
  • 页码:519-530
  • 全文大小:560 KB
  • 参考文献:1. Wang W., Xu Y., Khanna M.: A survey on the communication architectures in smart grid. Comput. Netw. 55(15), 3604鈥?629 (2011) CrossRef
    2. Mi B., Wang M., Zhou F.: An online service-oriented performance profiling tool for cloud computing systems. Front. Comput. Sci. 7(3), 431鈥?45 (2013) CrossRef
    3. Wenguang W., Weiping W., Yifan Z., Qun L.: Service-oriented simulation framework: an overview and unifying methodology. Simul. Trans. Soc. Model. Simul. Int. 87(3), 221鈥?52 (2011) CrossRef
    4. Atzori L., Iera A., Morabito G.: The internet of things: a survey. Comput. Netw. 54(15), 2787鈥?805 (2010) CrossRef
    5. Familiar, S.; Mart铆nez, F.; L贸pez, L.: Pervasive smart spaces and environments: a service-oriented middleware architecture for wireless Ad Hoc and sensor networks. Int. J. Distrib. Sens. Netw. 2012, 1鈥?1 (2012)
    6. Strassburger, S.; Schulze, T.; Fujimoto, R.: Future trends in distributed simulation and distributed virtual environments: results of a peer study. In: Proceedings of the 2008 Winter Simulation Conference, Miami, pp. 777鈥?85 (2008)
    7. Lamport L.: Clock and the ordering of events in a distributed system. Commun. ACM 21(7), 558鈥?65 (1978) CrossRef
    8. Sinha A., Das P.K., Basu D.: Implementation and timing analysis of clock synchronization on a transputer-based replicated system. Inf. Softw. Technol. 40(5鈥?), 291鈥?09 (1998) CrossRef
    9. Carothers, D.; Fujimoto, M.; Weatherly, M.; Wilson, L.: Design and implementation of HLA time management in the RTI version F.0. In: Proceedings of the 1997 Winter Simulation Conference, Atlanta, pp. 373鈥?80 (1997)
    10. Morillo, P.; Ordu艌a, M.; Duato, J.: A scalable synchronization technique for distributed virtual environments based on networked-server architectures. In: Proceedings of the International Conference on Parallel Processing Workshops, Columbus, pp. 74鈥?1 (2006)
    11. Rhee I.-K., Lee J., Kim J., Serpedin E., Wu C.: Clock synchronization in wireless sensor network: an overview. Sensors 9(1), 56鈥?5 (2009) CrossRef
    12. Mattern F.: Virtual time and global states of distributed systems. Parallel Distrib. Algorithms 1(23), 215鈥?26 (1989)
    13. Baldoni R., Raynal M.: Fundamentals of distributed computing: a practical tour of vector clock systems. IEEE Distrib. Syst. Online 3(2), 12 (2002)
    14. Choi, B.; Shen, X.: Distributed clock synchronization in delay tolerant networks. In: Proceedings of the 2010 IEEE International Conference on Communications, pp. 1鈥? (2010)
    15. Khlifi H., Gr茅goire C.: Low-complexity offline and online clock skew estimation and removal. Comput. Netw. 50(11), 1872鈥?884 (2006) CrossRef
    16. Zhang, W.; Zhou, J.; Peng, X.; Li, K.: Asynchronous time consistency control methods in distributed interactive simulation. J. Softw. 21(6), 1208鈥?219 (2010) (in Chinese)
    17. Wang J., Zhou M., Zhou H.: Clock synchronization for internet measurements: a clustering algorithm. Comput. Netw. 45(6), 731鈥?41 (2004) CrossRef
    18. Delaney D., Ward T., McLoone S.: On consistency and network latency in distributed interactive applications: a survey-part I. Presence Teleop. Virtual Environ. 15(2), 218鈥?34 (2006) CrossRef
    19. Riano L., McGinnity M.: Automatically composing and parameterizing skills by evolving finite state automata. Robot. Auton. Syst. 60(4), 639鈥?50 (2012) CrossRef
    20. Andova S., Groenewegen J., De-Vink P.: Dynamic consistency in process algebra: from paradigm to ACP. Sci. Comput. Program. 76(8), 711鈥?35 (2011) CrossRef
    21. Abdul-Kader H., El-Kholy W.: Modelling of updating moving object database using timed petri net model. Int. Arab J. Inf. Technol. 7(1), 79鈥?5 (2010)
    22. Liu H., Zheng B., Zhang W., Ren K.J.: A global graph-based approach for transaction and Qos-aware service composition. KSII Trans. Internet Inf. Syst. 5(7), 1252鈥?273 (2011)
    23. Ferreira, K.A.M.; Moreira, R.C.N.; Bigonha, M.A.S.; Bigonha, R.S.: A generic macroscopic topology of software networks-a quantitative evaluation. In: Proceedings of the 26th Brazilian Symposium on Software Engineering, pp. 161鈥?70 (2012)
    24. Mills D.L.: Internet time synchronization: the network time protocol. IEEE Trans. Commun. 39(10), 1482鈥?493 (1991) CrossRef
    25. Eidson, J.C.; Fischer, M.; White, J.: IEEE-1588 standard for a precision clock synchronization protocol for network measurement and control systems. In: Proceedings of the 34th Annual Precise Time and Time Interval Meeting, IEEE, pp. 243鈥?54 (2002)
    26. Sterzbach B.: GPS-based clock synchronization in a mobile, distributed real-time system. Real-Time Syst. 12(1), 63鈥?5 (1997) CrossRef
    27. Elson, J.; Girod, L.; Estrin, D.: Fine-grained network time synchronization using reference broadcasts. In: Proceedings of the 5th Symposium on Operating System Design and Implementation, ACM/IEEE, pp. 147鈥?63 (2002)
    28. Fan L., Ling Y., Wang T., Zhu X., Tang X.: Novel clock synchronization algorithm of parametric difference for parallel and distributed simulations. Comput. Netw. 57(6), 1474鈥?487 (2013) CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Engineering, general
    Mathematics
    Science, general
  • 出版者:Springer Berlin / Heidelberg
文摘
Designing appropriate clock synchronization schemes and maintaining time consistency among many sensor nodes are crucial for novel distributed applications environments such as Internet of Thing (IoT). However, analyzing the various factors leading to clock inconsistency should be conducted first. The traditional analysis methods are primarily experiential and qualitative, and dynamic disturbances existing among the factors are not considered; moreover, the emerging IoT is rapidly evolving in terms of large-scale feature, service-oriented trend, complexity, and dynamics. Such developments present difficulties in the use of traditional methods in IoT for the analysis of factorial effects on system clocks. To remedy these problems, we propose a novel dynamic evolution model called clock finite state automata (CFSA) using formal methods, exhibiting the overall changing processes of global clock states. We also develop a clock consistency evolution algorithm using CFSA to quantitatively evaluate the influencing factors. The experimental evaluation shows that network delay (41.4% on average) is the greatest impact factor; the frequent entry and exit of the sensor nodes (29.9%) are the second greatest, and the oscillator jitter of computers (11.1%) is the least impact factor. Compared with traditional analysis methods, our method has good feasibility, effectiveness, and novelty. The analysis results can guide the designers of new clock synchronization algorithms for distributed sensor nodes in IoT.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700