用户名: 密码: 验证码:
Optimization of CO2 separation technologies for Chinese refineries based on a fuzzy comprehensive evaluation model
详细信息    查看全文
  • 作者:Qian-Qian Song (1)
    Qing-Zhe Jiang (1)
    Zhao-Zheng Song (1)

    1. State Key Laboratory of Heavy Oil Processing
    ; China University of Petroleum ; Beijing ; 102249 ; China
  • 关键词:Chinese refineries ; CO2 emission ; Separation technique ; Economic evaluation ; AHP ; entropy method ; Fuzzy comprehensive evaluation model
  • 刊名:Petroleum Science
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:12
  • 期:1
  • 页码:197-206
  • 全文大小:385 KB
  • 参考文献:1. Abu-Zahra, MRM, Niederer, JPM, Feron, PHM (2007) CO2 capture from power plants: part II. A parametric study of the economical performance based on mono-ethanolamine. Int J Greenh Gas Control 1: pp. 135-147 CrossRef
    2. Alie, C, Backham, L, Croiset, E (2005) Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method. Energy Convers Manag 46: pp. 475-487 CrossRef
    3. Aroonwilas, A, Veawab, A (2007) Integration of CO2 capture unit using single- and blended-amines into supercritical coal-fired power plants: implications for emission and energy management. Int J Greenh Gas Control 1: pp. 143-150 CrossRef
    4. Chen, JH, Sheng, DR, Li, W (2002) A model of multi-objective comprehensive evaluation for power plant projects. Proc CSEE 22: pp. 152-155
    5. Chen, XL, Wang, RM, Cao, YF (2012) A novel evaluation method based on entropy for image segmentation. Procedia Eng 29: pp. 3959-3965 CrossRef
    6. de Mello LF, Pimenta RDM, Moure GT, et al. A technical and economical evaluation of CO2 capture from FCC units. Energy Procedia. 2009;1(1):117鈥?4.
    7. deMontigny, D, Tontiwachwuthikul, P, Chakma, A (2005) Comparing the absorption performance of packed columns and membrane contactors. Ind Eng Chem Res 44: pp. 5726-5732 CrossRef
    8. Falk-Pedersen, O, Dannstr枚m, H (1997) Separation of carbon dioxide from offshore gas turbine exhaust. Energy Convers Manag 38: pp. 81-89 CrossRef
    9. Feron, PHM, Jansen, AE (2002) CO2 separation with polyolefin membrane contactors and dedicated absorption liquids: performances and prospects. Sep Purif Technol 27: pp. 231-242 CrossRef
    10. Figueroa, JD, Fout, T, Plasynski, S (2008) Advances in CO2 capture technology-The U.S. Department of Energy鈥檚 Carbon Sequestration Program. Int J Greenh Gas Control 2: pp. 9-20 CrossRef
    11. Ho, MT, Allinson, GW, Wiley, DE (2011) Comparison of MEA capture cost for low CO2 emissions sources in Australia. Int J Greenh Gas Control 5: pp. 49-60 CrossRef
    12. Ho, MT, Allinson, GW, Wiley, DE (2008) Reducing the cost of CO2 capture from flue gases using pressure swing adsorption. Ind Eng Chem Res 47: pp. 4883-4890 CrossRef
    13. IEA Greenhouse Gas R&D Programme (IEA GHG). CO2 abatement in oil refineries: fired heaters. Report no. IEA/CON/99/61. Cheltenham: U.K. 2000.
    14. IEA. Energy technology transitions for industry鈥攕trategies for the next industrial revolution. Paris. 2009.
    15. International Energy Agency (IEA). Energy Technology Perspective. Paris. 2010.
    16. Jiang, QZ, Ma, JK, Chen, GS (2013) Estimation and analysis of carbon dioxide emissions in refineries. Mod Chem Ind 33: pp. 1-6
    17. Jiang, QZ, Xu, YM, Xin, WJ (2012) SWOT-AHP hybrid model for vehicle lubricants from CNPCLC, China. Pet Sci 9: pp. 558-564 CrossRef
    18. Johansson, D, Rootz茅n, J, Berntsson, T (2012) Assessment of strategies for CO2 abatement in the European petroleum refining industry. Energy 42: pp. 375-386 CrossRef
    19. Jorge, H, Antunes, CH, Martins, AG (2000) A multiple objective decision support model for the selection of remote load control strategies. IEEE Trans Power Syst 15: pp. 865-872 CrossRef
    20. Khan, JF, Bhuiyan, SM (2014) Weighted entropy for segmentation evaluation. Opt Laser Technol 57: pp. 236-242 CrossRef
    21. Kuramochi, T, Ram铆rez, A, Turkenburg, W (2012) Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Prog Energy Combust Sci 38: pp. 87-112 CrossRef
    22. Lai, WK, Khan, IM, Poh, GS (2012) Weighted entropy-based measure for image segmentation. Procedia Eng 41: pp. 1261-1267 CrossRef
    23. Li, JL, Chen, BH (2005) Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 41: pp. 109-122 CrossRef
    24. Liang, ZH, Yang, K, Sun, YW (2006) Decision support for choice optimal power generation projects: fuzzy comprehensive evaluation model based on the electricity market. Energy Policy 34: pp. 3359-3364 CrossRef
    25. Liu, Z, Wang, L, Kong, XM (2012) Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Ind Eng Chem Res 51: pp. 7355-7363 CrossRef
    26. Ma, JK, Jiang, QZ, Song, ZZ (2011) Construction of refinery carbon industry chain in low carbon economy perspective. Mod Chem Ind 31: pp. 1-6
    27. Ma, YT, Wang, ZG, Yang, Z (2003) Fuzzy comprehensive method for gas turbine evaluation. Proc CSEE 23: pp. 218-220
    28. Martunus, , Helwani, Z, Wiheeb, AD (2012) In situ carbon dioxide capture and fixation from a hot flue gas. Int J Greenh Gas Control 6: pp. 179-188 CrossRef
    29. Mavroudi, M, Kaldis, SP, Sakellaropoulos, GP (2003) Reduction of CO2 emission by a membrane contacting process. Fuel 82: pp. 2153-2159 CrossRef
    30. Meerman, JC, Hamborg, ES, Keulen, T (2012) Techno-economic assessment of CO2 capture at steam methane reforming facilities using commercially available technology. Int J Greenh Gas Control 9: pp. 160-171 CrossRef
    The economic assessment method and parameters for oil construction projects. China Planning Press, Beijing
    31. Mondal, MK, Balsora, HK, Varshney, P (2012) Progress and trends in CO2 capture/separation technologies: a review. Energy. 46: pp. 431-441 CrossRef
    The economic assessment method and parameters for capital construction projects. China Planning Press, Beijing
    32. Olajire, AA (2010) CO2 capture and separation technologies for end-of-pipe applications-a review. Energy. 35: pp. 2610-2628 CrossRef
    33. Rangwala, HA (1996) Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J Membr Sci 112: pp. 229-240 CrossRef
    34. Reddy, S, Vyas, S (2009) Recovery of carbon dioxide and hydrogen from PSA tail gas. Energy Procedia. 1: pp. 149-154 CrossRef
    35. Refat AG, Muhammad H, Shesha J. Transformer insulation risk assessment under smart grid environment due to enhanced aging effects. Electrical Insulation Conference. Annapolis MD. 5鈥? June 2011; 276鈥?79.
    36. Reiner P, Audus H, Smith AR. Carbon dioxide capture from fossil fuel power plants, Report SR2, IEA Greenhouse Gas R&D Programme. Cheltenham. 1994.
    37. Rubin, ES, Yeh, S, Antes, M (2007) Use of experience curves to estimate the future cost of power plants with CO2 capture. Int J Greenh Gas Control 1: pp. 188-197 CrossRef
    38. Saaty, TL, Shang, JS (2011) An innovative orders-of-magnitude approach to AHP-based multi-criteria decision making: Prioritizing divergent intangible humane acts. Eur J Oper Res 214: pp. 703-715 CrossRef
    39. Saaty, TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15: pp. 234-281 CrossRef
    40. Saaty, TL (1994) Highlights and critical points in the theory and application of the analytic hierarchy process. Eur J Oper Res 74: pp. 426-447 CrossRef
    41. Saaty, TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48: pp. 9-26 CrossRef
    42. Singh, D, Croiset, E, Douglas, PL (2003) Techno-economic study of CO2 capture from an existing coal fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Convers Manag 44: pp. 3073-3091 CrossRef
    43. U.S. Energy Information Administration (EIA). International Energy Outlook 2013. Washington D.C. 2013.
    44. Straelen, J, Geuzebroek, F, Goodchild, N (2010) CO2 capture for refineries: a practical approach. Int J Greenh Gas Control 4: pp. 316-320 CrossRef
    45. Wang, R, Zhang, HY, Feron, PHM (2005) Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep Purif Technol 46: pp. 33-40 CrossRef
    46. Xie, CS, Dong, DP, Hua, SP (2012) Safety evaluation of smart grid based on AHP-entropy method. Syst Eng Procedia. 4: pp. 203-209 CrossRef
    47. Yan, SP, Fang, MX, Wang, Z (2011) Economic analysis of CO2 separation from coal-fired flue gas by chemical absorption and membrane absorption technologies in China. Energy Procedia. 4: pp. 1878-1885 CrossRef
    48. Yan, SP, Fang, MX, Zhang, WF (2008) Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energy Convers Manag 49: pp. 3188-3197 CrossRef
    49. Yan, SP, Fang, MX, Zhang, WF (2007) Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88: pp. 501-511 CrossRef
    50. Yang, HQ, Xu, ZH, Fan, MH (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci. 20: pp. 14-27 CrossRef
    51. Yeon, SH, Lee, KS, Sea, B (2005) Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. J Membr Sci 257: pp. 156-160 CrossRef
  • 刊物主题:Mineral Resources; Industrial Chemistry/Chemical Engineering; Industrial and Production Engineering; Energy Economics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1995-8226
文摘
This study aims at determining the optimal CO2 separation technology for Chinese refineries, based on current available technologies, by the method of comprehensive evaluation. Firstly, according to the characteristics of flue gas from Chinese refineries, three feasible CO2 separation technologies are selected. These are pressure swing adsorption (PSA), chemical absorption (CA), and membrane absorption (MA). Secondly, an economic assessment of these three techniques is carried out in accordance with cash flow analysis. The results show that these three techniques all have economic feasibility and the PSA technique is the best. Finally, to further optimize the three techniques, a two-level fuzzy comprehensive evaluation model is established, including economic, technological, and environmental factors. Considering all the factors, PSA is optimal for Chinese refineries, followed by CA and MA. Therefore, to reduce Chinese refineries carbon emission, it is suggested that CO2 should be captured from off-gases using PSA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700