用户名: 密码: 验证码:
ENERGY-INERTIAL SCALE INTERACTIONS FOR VELOCITYAND TEMPERATURE IN THE UNSTABLE ATMOSPHERIC SURFACE LAYER
详细信息    查看全文
  • 作者:KATUL ; GABRIEL ; HSIEH ; CHENG I ; SIGMON ; JOHN
  • 刊名:Boundary-Layer Meteorology
  • 出版年:1997
  • 出版时间:1997
  • 年:1997
  • 卷:82
  • 期:1
  • 页码:49-80
  • 全文大小:363 KB
文摘
Triaxial sonic anemometer velocity and temperature measurements were used to investigate the local structure of the velocity and temperature fluctuations in the unstable atmospheric surface layer above a grass-covered forest clearing. Despite the existence of a 2/3 power law in the longitudinal velocity (2 decades) and temperature (1 decade) structure functions, local isotropy within the inertial subrange was not attained by the temperature field, although a near-isotropic state was attained by the velocity field. It was found that sources of anisotropy were due to interactions between the large-scale and small-scaleeddy motion, and due to localvelocity-thermal interactions. Statistical measures were developed and used to quantify these types of interactions. Other types of interactions were also measured but were less significant. The temperature gradient skewness was measured and found to be non-zero in agreement with other laboratory flow types for inertial subrange scales. Despite these interactions and anisotropy sources in the local temperature field, Obukhov's 1949hypothesis for the mixed velocity-temperature structure functions was found to be valid. Finally, our measurements show that while a 2/3 power-law in the longitudinal velocity structure function developed at scales comparable to five times the height from the ground surface (z), near-isotropic conditions wereachieved at scales smaller than z/2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700