用户名: 密码: 验证码:
Overflow-assisted laser machining of titanium alloy: surface characteristics and temperature field modeling
详细信息    查看全文
  • 作者:Viboon Tangwarodomnukun
  • 关键词:Laser ; Water ; Overflow ; Ablation ; Modeling ; Titanium
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:88
  • 期:1-4
  • 页码:147-158
  • 全文大小:
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design;
  • 出版者:Springer London
  • ISSN:1433-3015
  • 卷排序:88
文摘
Underwater laser machining process is a promising method to cut materials with less thermal damage. A variation of underwater technique is overflow-assisted laser ablation. This process can introduce a higher thermal convection and more uniform water layer than the typical underwater method. Such characteristics can encourage the damage-free fabrication and also stabilize the laser ablation in water. In this study, cut profile and temperature distribution of workpiece induced by the overflow technique were investigated. Titanium alloy (Ti-6Al-4V) used as a work sample was grooved by a nanosecond pulse laser under different overflow conditions. The effects of laser power, laser repetition rate, and water flow velocity were experimentally and numerically examined. A clean and smooth cut surface can be fabricated when the overflow technique was used. Microcracks and porosities found on the laser-ablated area were also addressed in this study. The temperature field of titanium alloy under the different ablation conditions was simulated by using the finite difference computation. The transient heat conduction model was implemented together with the enthalpy method and temperature-dependent material properties. By using the developed model, the groove depths obtained from the experiment and simulation were in a good agreement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700