用户名: 密码: 验证码:
Modeling and optimal torque control of a snake-like robot based on the fiber bundle theory
详细信息    查看全文
  • 作者:Xian Guo (1) (3)
    ShuGen Ma (1) (2)
    Bin Li (1)
    MingHui Wang (1)
    YueChao Wang (1)

    1. State Key Laboratory of Robotics
    ; Shenyang Institute of Automation ; Chinese Academy of Sciences ; Shenyang ; 110016 ; China
    3. University of Chinese Academy of Sciences
    ; Beijing ; 100049 ; China
    2. Department of Robotics
    ; Ritsumeikan University ; Shiga-ken ; 525-8577 ; Japan
  • 关键词:snake ; like robot ; redundant torque ; fiber bundle theory ; nonholonomic ; optimal control ; 铔囧舰鏈哄櫒浜?/li> 鏈€浼樻帶鍒?/li> 鍐椾綑鍔涚煩 ; 绾ょ淮涓涚悊璁?/li> 032205
  • 刊名:SCIENCE CHINA Information Sciences
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:58
  • 期:3
  • 页码:1-13
  • 全文大小:837 KB
  • 参考文献:1. Ma S G. Analysis of creeping locomotion of a snake-like robot. Adv Robot, 2001, 15: 205鈥?24 CrossRef
    2. Saito M, Fukaya M, Iwasaki T. Serpentine locomotion with robotic snakes. IEEE Contr Syst Mag, 2002, 22: 64鈥?1 CrossRef
    3. Ostrowski J, Burdick J. The geometric mechanics of undulatory robotic locomotion. Int J Robot Res, 1998, 17: 683鈥?01 CrossRef
    4. Ostrowski J, Burdick J. Gait kinematics for a serpentine robot. In: Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, 1996. 1294鈥?299 CrossRef
    5. Transeth A A, van de Wouw N, Pavlov A, et al. Tracking control for snake robot joints. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, 2007. 3539鈥?546
    6. Pendar H, Vossoughi G, Khoshnood A, et al. Assisted passive snake robots: conception and dynamic modeling using Kane鈥檚 method. In: Proceedings of ASME International Mechanical Engineering Congress and Exposition Orlando, Florida, 2005
    7. Vossoughi G, Pendar H, Heidari Z, et al. Assisted passive snake-like robots: conception and dynamic modeling using Gibbs-Appell method. Robotica, 2007, 26: 267鈥?76
    8. Ali S. Newton-Euler Approach for Bio-Robotics Locomotion Dynamics: from Discrete to Continuous Systems. Dissertation for the Doctoral Degree. Nantes: Ecole des Mines de Nantes, 2011
    9. Ostrowski J, Lewis A, Murray R, et al. Nonholonomic mechanics and locomotion: the snakeboard example. In: Proceedings of IEEE International Conference on Robotics and Automation, San Diego, 1994. 2391鈥?397
    10. Ostrowski J. The Mechanics and Control of Undulatory Robotic Locomotion. Dissertation for Doctoral Degree. Pasadena: California Institute of Technology, 1995
    11. Kelly S D, Murray R M. Geometric phases and robotic locomotion. J Robot Syst, 1995, 12: 417鈥?31 CrossRef
    12. Bullo F, Lewis A D. Kinematic controllability and motion planning for the snakeboard. IEEE Trans Robots Automat, 2003, 19: 494鈥?98 CrossRef
    13. Shammas E, Choset H, Rizzi A A. Natural gait generation techniques for principally kinemtical systems. In: Thrun S, Sukhatme G S, Schaal S, eds. Proceedings of Robotics: Science and Systems. Cambridge: MIT Press, 2005
    14. Shammas E, Choset H, Rizzi A A. Geometric motion planning analysis for two classes of underactuated mechanical systems. Int J Robot Res, 2007, 26: 1043鈥?072 CrossRef
    15. Ishikawa M. Iterative feedback control of snake-like robot based on principal fiber bundle modeling. Int J Adv Mech, 2009, 1: 175鈥?82
    16. Boyer F, Ali S. Recursive inverse dynamics of mobile multibody systems with joints and wheels. IEEE Trans Robot, 2011, 27: 215鈥?28 CrossRef
    17. Boyer F, Ali S, Porez M. Macrocontinuous dynamics for hyperredundant robots: application to kinematic locomotion bioinspired by elongated body animals. IEEE Trans Robot, 2012, 28: 303鈥?17 CrossRef
    18. Wang Z F, Ma S G, Li B. A unified dynamic model for locomotion and manipulation of a snake-like robot based on differential geometry. Sci China Inf Sci, 2011, 54: 318鈥?33 CrossRef
    19. Hirose S. Biologically Inspired Robots (Snake-Like Locomotor and Manipulator). Oxford: Oxford University Press, 1993. 1鈥?9
  • 刊物类别:Computer Science
  • 刊物主题:Chinese Library of Science
    Information Systems and Communication Service
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1919
文摘
For the snake-like robot with passive wheels, the side constraint force provides the required thrust which is less than the maximum static friction. Minimizing the side constraint force can reduce possibility of skidding which is important to ensure stable and efficient motion of the robot. In this paper we model the snakelike robot based on the fiber bundle theory. This method can reduce the complexity of the dynamics and derive the exact analytical solution for the side constraint force which is linear to the redundant torque. Using the linear relation, we can derive directly the optimal torque by minimizing the side constraint force. Additionally the nonholonomic constraint can be used for constructing the connection of the fiber bundle. Using the connection, we can select the gait of the snake-like robot. The position and orientation of the head can be described in terms of the special Euclidean group SE(2) which is also the structure group of the fiber bundle. Using the symmetry of the structure group, we can reduce the dynamics equations and derive the analytical solution for the side constraint force. Kinematics and dynamics simulations validate the proposed methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700