用户名: 密码: 验证码:
Recent advances and future challenges for massive MIMO channel measurements and models
详细信息    查看全文
  • 作者:Cheng-Xiang Wang ; Shangbin Wu ; Lu Bai ; Xiaohu You…
  • 关键词:5G ; massive MIMO channel measurements ; massive MIMO channel models ; non ; stationary statistical properties ; channel capacity ; 021301 ; 5G ; 大规模多输入多输出系统的信道测量 ; 信道建模 ; 非平稳统计特性 ; 信道容量
  • 刊名:SCIENCE CHINA Information Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2
  • 页码:1-16
  • 全文大小:576 KB
  • 参考文献:1.Nokia Networks. Looking ahead to 5G. White Paper. http://​info.​networks.​nokia.​com/​LookingAheadto5G​ 5G Requirements wp.html
    2.Samsung. 5G vision. White Paper. http://​www.​samsung.​com/​global/​business-images/​insights/​2015/​Samsung-5GVision-2.​pdf
    3.Dahlman E, Mildh G, Parkvall S, et al. 5G radio access. Ericsson Rev, 2014, 6: 1–7. http://​sixtysix.​wirelab.​ericsson.​net /res/thecompany/docs/publications/ericsson review/2014/er-5g-radio-access.pdf
    4.Qualcomm. 1000x data challenge. White Paper. https://​www.​qualcomm.​com/​documents/​1000x-mobile-data-challenge
    5.Huawei. 5G a technology vision. White Paper. https://​www.​huawei.​com/​ilink/​en/​download/​HW 314849
    6.CMCC. CMCC technology vision 2020 plus. White Paper. http://​www.​gtigroup.​org/​CMCC Technology Vision 2020 Plus White Paper.pdf
    7.METIS. Scenarios, requirements and KPIs for 5G mobile and wireless system. http://​publications.​lib.​chalmers.​se /records/fulltext/213055/local 213055.pdf
    8.IMT-2020 Promotion Group. 5G visions and requirements. White Paper. http://​www.​imt-2020.​cn/​en/​documents/​listByQuery?​currentPage=​1&​content=​

9.5GNOW. 5G cellular communications scenarios and system requirements. http://​is-wireless.​com/​wp-content/​uploads/​2015/​07/​5GNOW-Deliverables-5G-Cellular-Communications-Scenarios-and-System-Requirements.​pdf
10.Wang C X, Haider F, Gao X, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122–130CrossRef
11.Tse D, Viswanath P. Fundamentals of Wirless Communication. Cambridge: Cambridge University Press, 2005
12.Larsson E G, Tufvesson F, Edfors O, et al. Massive MIMO for next generation wireless systems. IEEE Commun Mag, 2014, 52: 186–195CrossRef
13.Rusek F, Persson D, Lau B K, et al. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Processing Mag, 2012, 30: 40–60CrossRef
14.Ma Z, Zhang Z Q, Ding Z G, et al. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci China Inf Sci, 2015, 58: 041301
15.Jungnickel V, Manolakis K, Zirwas W, et al. The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun Mag, 2014, 52: 44–51CrossRef
16.Osseiran A, Boccardi F, Braun V, et al. Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun Mag, 2014, 52: 26–35CrossRef
17.Payami S, Tufvesson F. Channel measurements and analysis for very large array systems at 2.6 GHz. In: Proceedings of 6th European Conference on Antennas and Propagation (EUCAP), 2012, Prague. 1–8
18.Kyösti P, Meinilä J, Hentilä L, et al. WINNER D1.1.2 WINNER II channel models. ver 1.1, 2007
19.Liu L, Oestges C, Poutanen J, et al. The COST 2100 MIMO channel model. IEEE Commun Mag, 2012, 19: 92–99
20.Zhu M F, Eriksson G, Tufvesson F. The COST 2100 channel model: parameterization and validation based on outdoor MIMO measurements at 300 MHz. IEEE Trans Wirel Commun, 2013, 12: 888–897CrossRef
21.Verdone R, Zanella A. Pervasive Mobile and Ambient Wireless Communications: COST Action 2100. London: Springer, 2012CrossRef
22.Li J, Zhao Y. Channel characterization and modeling for large-scale antenna systems. In: Proceedings of 14th International Symposium on Communications and Information Technologies (ISCIT), Incheio, 2014. 559–563
23.Gao X, Edfors O, Rusek F, et al. Linear pre-coding performance in measured very-large MIMO channels. In: Proceedings of IEEE Vehicular Technology Conference (VTC Fall), San Francisco, 2011. 1–5
24.Hoydis J, Hoek C, Wild T, et al. Channel measurements for large antenna arrays. In: Proceedings of International Symposium on Wireless Communication Systems (ISWCS), Paris, 2012. 811–815
25.Shepard C, Yu H, Anand N, et al. Argos: practical many-antenna base stations. In: Proceedings of 18th Annual International Conference on Mobile Computing and Networking, Istanbul, 2012. 53–64
26.Bernland A, Gustafsson M. Estimation of spherical wave coefficients from 3-D positioner channel measurements. IEEE Antenn Wirel Propag Lett, 2012, 11: 608–611CrossRef
27.Rusek F, Edfors O, Tufvesson F. Indoor multi-user MIMO: measured user orthogonality and its impact on the choice of coding. In: Proceedings of 6th European Conference on Antennas and Propagation (EUCAP), Prague, 2012. 2289–2293
28.Payami S, Tufvesson F. Delay spread properties in a measured massive MIMO system at 2.6 GHz. In: Proceedings of IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London, 2013. 53–57
29.Gao X, Edfors O, Rusek F, et al. Massive MIMO in real propagation environments. IEEE Trans Wirel Commun, in press
30.Gao X, Tufvesson F, Edfors O, et al. Measured propagation characteristics for very-large MIMO at 2.6 GHz. In: Conference Record of 46th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, 2012. 295–299
31.Chiu C Y, Yan J B, Murch R D. 24-port and 36-port antenna cubes suitable for MIMO wireless communications. IEEE Trans Antenn Propag, 2008, 56: 1170–1176CrossRef
32.Gao X, Edfors O, Liu J, et al. Antenna selection in measured massive MIMO channels using convex optimization. In: Proceedings of IEEE Global Communications Conference, Atlanta, 2013. 129–134
33.Vieira J, Rusek F, Tufvesson F. Reciprocity calibration methods for massive MIMO based on antenna coupling. In: Proceedings of IEEE Global Communications Conference, Austin, 2014. 3708–3712
34.Vieira J, Malkowsky S, Nieman K, el al. A flexible 100-antenna testbed for massive MIMO. In: Proceedings of IEEE Global Communications Conference, Austin, 2014. 1–7
35.Poon S Y, Ho M. Indoor multiple-antenna channel characterization from 2 to 8 GHz. In: Proceedings of IEEE International Conference on Communications, Anchorage, 2003. 3519–3523
36.Gao X, Glazunov A A, Weng J, et al. Channel measurement and characterization of interference between residential femto-cell systems. In: Proceedings of 5th European Conference on Antennas and Propagation (EUCAP), Rome, 2011. 3769–3773
37.Glazunov A A, Prasad S, Handel P. Experimental characterization of the propagation channel along a very large virtual array in a reverberation chamber. Prog Electromagn Res B, 2014, 59: 205–217CrossRef
38.Koivunen J, Almers P, Kolmonen V M, et al. Dynamic multi-link indoor MIMO measurements at 5.3 GHz. In: Proceedings of 2nd European Conference on Antennas and Propagation, Edinburgh, 2007. 1–6
39.Gao X, Tufvesson F, Edfors O. Massive MIMO channels-measurements and models. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2013. 280–284
40.Pi Z Y, Khan F. A millimeter-wave massive MIMO system for next generation mobile broadband. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 2012. 693–698
41.Molisch A F, Tufvesson F. Propagation channel models for next-generation wireless communications systems. IEICE Trans Commun, 2014, E97-B: 2022–2034CrossRef
42.Zheng K, Ou S L, Yin X F. Massive MIMO channel models: a survey. Hindawi International J Antenn Propag, 2014. 1–10
43.Weichselberger W, Herdin H, Özcelik H, et al. A stochastic MIMO channel model with joint correlation of both link ends. IEEE Trans Commun, 2006, 5: 90–100
44.Mohammed S K, Larsson E G. Per-antenna constant envelope precoding for large multi-user MIMO systems. IEEE Trans Commun, 2013, 61: 1059–1071CrossRef
45.Zhang J W, Yuan X J, Ping L. Hermitian precoding for distributed MIMO systems with individual channel state information. IEEE J Sel Areas Commun, 2013, 31: 241–250CrossRef
46.Wen C K, Jin S, Wong K K. On the sum-rate of multiuser MIMO uplink channels with jointly-correlated Rician fading. IEEE Trans Commun, 2011, 59: 2883–2895CrossRef
47.Noh S, Zoltowski M D, Love D J. Pilot beam pattern design for channel estimation in massive MIMO systems. IEEE J Sel Top Signal Process, 2014, 8: 787–801CrossRef
48.Couillet R, Debbah M, Silverstein J W. A deterministic equivalent for the analysis of correlated MIMO multiple access channels. IEEE Trans Inf Theory, 2011, 57: 3493–3514CrossRef MathSciNet
49.Taricco G. Asymptotic mutual information statistics of separately correlated Rician fading MIMO channels. IEEE Inf Theory, 2008, 54: 3490–3504CrossRef MathSciNet MATH
50.Riegler E, Taricco G. Asymptotic statistics of the mutual information for spatially correlated Rician fading MIMO channels with interference. IEEE Inf Theory, 2010, 56: 1542–1559CrossRef MathSciNet
51.Veeravalli V V, Liang Y, Sayeed A M. Correlated MIMO wireless channels: capacity, optimal signaling, and asymptotics. IEEE Inf Theory, 2005, 51: 2058–2072CrossRef MathSciNet MATH
52.Zhang M, Smith P J, Shafi M. An extended one-ring MIMO channel model. IEEE Trans Wirel Commun, 2007, 6: 2759–2764CrossRef
53.Chen J, Lau V K N. Two-Tier precoding for FDD multi-Cell massive MIMO time-varying interference networks. IEEE J Sel Areas Commun, 2014, 32: 1230–1238CrossRef
54.Wu S, Wang C X, Aggoune E-H M, et al. A non-stationary 3-D wideband twin-cluster model for 5G massive MIMO channels. IEEE J Sel Areas Commun, 2014, 32: 1207–1218CrossRef
55.Wu S B, Wang C X, Aggoune E-H M. Non-stationary wideband channel models for massive MIMO systems. In: Proceedings of 2nd Symposium on Wireless Sensor and Cellular Networks, Jeddah, 2013. 1–8
56.Wu S B, Wang C X, Haas H, et al. A non-stationary wideband channel model for Massive MIMO communication systems. IEEE Trans Wirel Commun, 2015, 14: 1434–1446CrossRef
57.Raschkowski L, Kyosti P, Kusume K, et al. METIS channel models. https://​www.​metis2020.​com/​wp-content/​uploads /deliverables/METIS D1.4 v1.0.pdf
58.Ozcelik H, Czink N, Bonek E. What Makes a Good MIMO Channel Model? In: Proceedings of IEEE 61st Vehicular Technology Conference, Stockholm, 2005. 156–160
59.Sayeed A M. Deconstructing multiantenna fading channels. IEEE Trans Signal Process, 2002, 50: 2563–2579CrossRef
60.Medbo J, Borner K, Haneda K, et al. Channel modelling for the fifth generation mobile communications. In: Proceedings of 8th European Conference on Antennas and Propagation (EuCAP), Hague, 2014. 219–223CrossRef
61.Andrews J G, Buzzi S, Choi W, et al. What will 5G be? IEEE J Sel Areas Commun, 2014, 32: 1065–1082CrossRef
62.Saleh A A M, Valenzuela R A. A statistical model for indoor multipath propagation. IEEE J Sel Areas Commun, 1987, 5: 128–137CrossRef
63.Molisch A F, Balakrishnan K, Cassioli D, et al. IEEE 802.15.4a channel model—final report. https://​mentor.​ieee.​org /802.15/dcn/04/15-04-0662-04-004a-channel-model-final-report-r1.pdf
64.Porcino D, Hirt W. Ultra-wideband radio technology: potential and challenges ahead. IEEE Commun Mag, 2003, 41: 66–74CrossRef
65.Fort A, Ryckaert J, Desset C, et al. Ultra-wideband channel model for communication around the human body. IEEE J Sel Areas Commun, 2006, 24: 927–933CrossRef
66.Molisch A F, Foerster J R, Pendergrass M. Channel models for ultrawideband personal area networks. IEEE Wirel Commun, 2004, 10: 14–21CrossRef
67.Maltsev A, Sadri A, Maslennikov R, et al. Channel models for 60 GHz WLAN systems. Doc.: IEEE 802.11-09/0334r6, 2010
68.Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 2013, 1: 335–349CrossRef
69.3GPP TR 36.873. Study on 3D channel model for LTE. V2.0.0, 2014
70.Cheng X, Yao Q, Wen M W, et al. Wideband channel modeling and ICI cancellation for vehicle-to-vehicle communication systems. IEEE J Sel Areas Commun, 2013, 31: 434–448CrossRef
71.Cheng X, Wang C X, Ai B, et al. Envelope level crossing rate and average fade duration of non-isotropic vehicle-tovehicle Ricean fading channels. IEEE Trans Intell Transp Syst, 2013, 15: 62–72CrossRef
72.Karedal J, Tufvesson F, Czink N, et al. A geometry-based stochastic MIMO model for vehicle-to-vehicle communications. IEEE Trans Wirel Commun, 2009, 8: 3646–3657CrossRef
73.Zajic A G, Stüber G L. Three-dimensional modeling and simulation of wideband MIMO mobile-to-mobile channels. IEEE Trans Wirel Commun, 2009, 8: 1260–1275CrossRef
74.Yuan Y, Wang C X, Cheng X, et al. Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-tovehicle channels. IEEE Trans Wirel Commun, 2014, 13: 298–309CrossRef
75.Ghazal A, Wang C X, Ai B, et al. A nonstationary wideband MIMO channel model for high-mobility intelligent transportation systems. IEEE Trans Intell Transp Syst, 2015, 16: 885–897
76.Chen C, Zhong Z, Ai B. Stationarity intervals of time-variant channel in high speed railway scenario. China Commun, 2012, 9: 64–70
77.Wu S B, Wang C X, Aggoune E-H M, et al. A novel Kronecker-based stochastic model for massive MIMO channels. In: Proceedings of IEEE/CIC International Conference on Communications in China, Shenzhen, 2015
78.Chuah C N, Tse D N C, Kahn J M, et al. Capacity scaling in MIMO wireless systems under correlated fading. IEEE Trans Inf Theory, 2002, 48: 637–650CrossRef MathSciNet MATH
79.Wu S B, Wang C X, Aggoune E-H M, et al. A unified framework for 5G wireless channel models. IEEE Trans Wirel Commun, submitted for publication
80.Tulino A M, Verdu S. Random matrix theory and wireless communications. Found Trends Commun Inf Theory, 2004, 1: 1–182CrossRef
  • 作者单位:Cheng-Xiang Wang (1) (2)
    Shangbin Wu (1)
    Lu Bai (2)
    Xiaohu You (3)
    Jing Wang (4)
    Chih-Lin I (5)

    1. School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
    2. Shandong Provincial Key Laboratory of Wireless Communication Technologies, Shandong University, Jinan, 250100, China
    3. National Mobile Communications Laboratory, Southeast University, Nanjing, 211189, China
    4. Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
    5. China Mobile Research Institute, Beijing, 100053, China
  • 刊物类别:Computer Science
  • 刊物主题:Chinese Library of Science
    Information Systems and Communication Service
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1919
  • 文摘
    The emerging fifth generation (5G) wireless communication system raises new requirements on spectral efficiency and energy efficiency. A massive multiple-input multiple-output (MIMO) system, equipped with tens or even hundreds of antennas, is capable of providing significant improvements to spectral efficiency, energy efficiency, and robustness of the system. For the design, performance evaluation, and optimization of massive MIMO wireless communication systems, realistic channel models are indispensable. This article provides an overview of the latest developments in massive MIMO channel measurements and models. Also, we compare channel characteristics of four latest massive MIMO channel models, such as receiver spatial correlation functions and channel capacities. In addition, future challenges and research directions for massive MIMO channel measurements and modeling are identified. Keywords 5G massive MIMO channel measurements massive MIMO channel models non-stationary statistical properties channel capacity

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700