用户名: 密码: 验证码:
Big Bandgap in Highly Reduced Graphene Oxides
详细信息    查看全文
文摘
It is generally believed that the bandgap of the graphene oxide is proportional to the concentration of the oxygen atoms and a highly reduced graphene oxide (rGO) without vacancy defects should be gapless. We show here from first principles calculations that the bandgap can be effectively opened even in low oxidation level with the absorption of oxygen atoms either symmetrically or asymmetrically. The properly arranged absorption can induce a bandgap up to 1.19 eV for a C/O ratio of 16/1 in a symmetric system and a bandgap up to 1.58 eV for a C/O ratio of 32/3 in an asymmetric system, at generalized gradient approximation (GGA) level. The hybridization between the in-plane pxy orbitals of oxygen atoms and the out-of-plane pz frontier orbital of graphene is responsible for the opening of the bandgap. This finding sheds new light on the bandgap engineering of graphene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700