用户名: 密码: 验证码:
Uptake, Translocation, and Transformation of Quantum Dots with Cationic versus Anionic Coatings by Populus deltoides 脳 nigra Cuttings
详细信息    查看全文
文摘
Manipulation of the organic coatings of nanoparticles such as quantum dots (QDs) to enhance specific applications may also affect their interaction and uptake by different organisms. In this study, poplar trees (Populus deltoides 脳 nigra) were exposed hydroponically to 50-nM CdSe/CdZnS QDs coated with cationic polyethylenimine (PEI) (35.3 卤 6.6 nm) or poly(ethylene glycol) of anionic poly(acrylic acid) (PAA-EG) (19.5 卤 7.2 nm) to discern how coating charge affects nanoparticle uptake, translocation, and transformation within woody plants. Uptake of cationic PEI-QDs was 10 times faster despite their larger hydrodynamic size and higher extent of aggregation (17 times larger than PAA-EG-QDs after 11-day incubation in the hydroponic medium), possibly due to electrostatic attraction to the negatively charged root cell wall. QDs cores aggregated upon root uptake, and their translocation to poplar shoots (negligible for PAA-EG-QDs and 0.7 ng Cd/mg stem for PEI-QDs) was likely limited by the endodermis. After 2-day exposure, PEI and PAA-EG coatings were likely degraded from the internalized QDs inside the plant, leading to the aggregation of the metallic cores and a 鈥渞ed-shift鈥?of fluorescence. The fluorescence of PEI-QD aggregates was stable inside the roots through the 11-day exposure period. In contrast, the PAA-EG-QD aggregates lost fluorescence inside the plant after 11 days probably due to destabilization of the coating, even though these QDs were stable in the hydroponic solution. Overall, these results highlight the importance of coating properties in the rate and extent to which nanoparticles are assimilated by plants and potentially introduced into food webs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700