用户名: 密码: 验证码:
Role of CO2 in Mass Transfer, Reaction Kinetics, and Interphase Partitioning for the Transesterification of Triolein in an Expanded Methanol System with Heterogeneous Acid Catalyst
详细信息    查看全文
文摘
Fatty acid methyl ester (FAME) production via transesterification of triglycerides (TGs) over a heterogeneous acid catalyst is mediated by carbon dioxide in an expanded methanol system. A representative TG, triolein, is used to determine the mechanisms and interactions responsible for the improved yields over Nafion-NR50 in these system conditions. Namely, the system mass transfer limitations, reaction kinetics, and interphase partitioning behavior are explored by varying mixing conditions and catalyst characteristics over a time series of 4 h. It is found that COb>2b> enhances mass transfer leading to improved reaction yields and product profiles due to increased substrate transport to and from the catalyst surface. COb>2b> also contributes to catalyst expansion, leading to greater exposure of active sites and faster reaction kinetics. Initial reaction rate constants using methanol-soaked Nafion reflect pseudo-first-order kinetics. Finally, the substrate-reagent mediating properties of COb>2b> are discussed in reference to the varying reaction rates of TG and intermediate products. All three of these mechanisms contribute to COb>2b>鈥檚 multifaceted role in facilitating heterogeneously catalyzed reactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700