用户名: 密码: 验证码:
Molecular Structure, Spectroscopy, and Photoinduced Kinetics in Trinuclear Cyanide Bridged Complex in Solution: A First-Principles Perspective
详细信息    查看全文
文摘
We investigate the molecular structure of the solvated complex, [(NC)6Fe鈥揚t(NH3)4鈥揊e(CN)6]4鈥?/sup>, and related dinuclear and mononuclear model complexes using first-principles calculations. Mixed nuclear complexes in both solution and crystal phases were widely studied as models for charge transfer (CT) reactions using advanced spectroscopical and electrochemical tools. In contrast to earlier interpretations, we find that the most stable gas phase and solvated geometries are substantially different from the crystal phase geometry, mainly due to variance in the underlying oxidation numbers of the metal centers. Specifically, in the crystal phase a Pt(IV) metal center resulting from Fe 鈫?Pt backward electron transfers is stabilized by an octahedral ligand field, whereas in the solution phase a Pt(II) metal complex that prefers a square planar ligand field forms a CT salt by bridging to the iron complexes through long-range electrostatic interactions. The different geometry is shown to be consistent with spectroscopical data and measured CT rates of the solvated complex. Interestingly, we find that the experimentally indicated photoinduced process in the solvated complex is of backward CT (Fe 鈫?Pt).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700