用户名: 密码: 验证码:
Geochemical and Microbiological Responses to Oxidant Introduction into Reduced Subsurface Sediment from the Hanford 300 Area, Washington
详细信息    查看全文
  • 作者:Elizabeth M. Percak-Dennett ; Eric E. Roden
  • 刊名:Environmental Science & Technology
  • 出版年:2014
  • 出版时间:August 19, 2014
  • 年:2014
  • 卷:48
  • 期:16
  • 页码:9197-9204
  • 全文大小:404K
  • ISSN:1520-5851
文摘
Pliocene-aged reduced lacustrine sediment from below a subsurface redox transition zone at the 300 Area of the Hanford site (southeastern Washington) was used in a study of the geochemical response to introduction of oxygen or nitrate in the presence or absence of microbial activity. The sediments contained large quantities of reduced Fe in the form of Fe(II)-bearing phyllosilicates, together with smaller quantities of siderite and pyrite. A loss of ca. 50% of 0.5 M HCl-extractable Fe(II) [5鈥?0 mmol Fe(II) L鈥?] and detectable generation of sulfate (ca. 0.2 mM, equivalent to 10% of the reduced inorganic sulfur pool) occurred in sterile aerobic reactors. In contrast, no systematic loss of Fe(II) or production of sulfate was observed in any of the other oxidant-amended sediment suspensions. Detectable Fe(II) accumulation and sulfate consumption occurred in non-sterile oxidant-free reactors. Together, these results indicate the potential for heterotrophic carbon metabolism in the reduced sediments, consistent with the proliferation of known heterotrophic taxa (e.g., Pseudomonadaceae, Burkholderiaceae, and Clostridiaceae) inferred from 16S rRNA gene pyrosequencing. Microbial carbon oxidation by heterotrophic communities is likely to play an important role in maintaining the redox boundary in situ, i.e., by modulating the impact of downward oxidant transport on Fe/S redox speciation. Diffusion鈥搑eaction simulations of oxygen and nitrate consumption coupled to solid-phase organic carbon oxidation indicate that heterotrophic consumption of oxidants could maintain the redox boundary at its current position over millennial time scales.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700