用户名: 密码: 验证码:
Shape- and Interface-Induced Control of Spin Dynamics of Two-Dimensional Bicomponent Magnonic Crystals
详细信息    查看全文
文摘
Controlled fabrication of periodically arranged embedded nanostructures with strong interelement interaction through the interface between the two different materials has great potential applications in spintronics, spin logic, and other spin-based communication devices. Here, we report the fabrication of two-dimensional bicomponent magnonic crystals in form of embedded Ni<sub>80sub>Fe<sub>20sub> nanostructures in Co<sub>50sub>Fe<sub>50sub> thin films by nanolithography. The spin wave (SW) spectra studied by a broadband ferromagnetic resonance spectroscopy showed a significant variation as the shape of the embedded nanostructure changes from circular to square. Significantly, in both shapes, a minimum in frequency is obtained at a negative value of bias field during the field hysteresis confirming the presence of a strong exchange coupling at the interface between the two materials, which can potentially increase the spin wave propagation velocity in such structures leading to faster gigahertz frequency magnetic communication and logic devices. The spin wave frequencies and bandgaps show bias field tunability, which is important for above device applications. Numerical simulations qualitatively reproduced the experimental results, and simulated mode profiles revealed the spatial distribution of the SW modes and internal magnetic fields responsible for this observation. Development of such controlled arrays of embedded nanostructures with improved interface can be easily applied to other forms of artificial crystals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700