用户名: 密码: 验证码:
Both Zundel and Eigen Isomers Contribute to the IR Spectrum of the Gas-Phase H9O4+ Cluster
详细信息    查看全文
  • 作者:Waldemar Kulig ; Noam Agmon
  • 刊名:Journal of Physical Chemistry B
  • 出版年:2014
  • 出版时间:January 9, 2014
  • 年:2014
  • 卷:118
  • 期:1
  • 页码:278-286
  • 全文大小:525K
  • ISSN:1520-5207
文摘
The 鈥淓igen cation鈥? H3O+(H2O)3, is the most prevalent protonated water structure in the liquid phase and the most stable gas-phase isomer of the H+(H2O)4 cluster. Nevertheless, its 50 K argon predissociation vibrational spectrum contains unexplainable low frequency peak(s). We have simulated the IR spectra of 10 gas-phase H+(H2O)4 isomers, that include zero to three argon ligands, using dipole autocorrelation functions from ab initio molecular dynamics with the CP2K software. We have also tested the effect of elevated temperature and dispersion correction. The Eigen isomers describe well the high frequency portion of the spectrum but do not agree with experiment below 2000 cm鈥?. Most notably, they completely lack the 鈥減roton transfer bands鈥?observed at 1050 and 1750 cm鈥?, which characterize Zundel-type (H5O2+) isomers. In contrast, linear isomers with a Zundel core, although not the lowest in energy, show very good agreement with experiment, particularly at low frequencies. Peak assignments made with partial velocity autocorrelation functions verify that the 1750 cm鈥? band does not originate with the Eigen isomer but is rather due to coupled proton transfer/water bend in the Zundel isomer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700