用户名: 密码: 验证码:
Nonequilibrium Ionic Response of Biased Mechanically Controllable Break Junction (MCBJ) Electrodes
详细信息    查看全文
文摘
Novel experimental techniques allow for the manipulation and interrogation of biomolecules between metallic probes immersed in micro/nanofluidic channels. The behavior of ions in response to applied fields is a major issue in the use of these techniques in sensing applications. Here, we experimentally and theoretically elucidate the behavior of background currents in these systems. These large currents have a slowly decaying transient response, as well as noise that increases with ionic concentration. Using mechanically controllable break junctions (MCBJ), we study the ionic response in nanogaps with widths ranging from a few nanometers to millimeters. Moreover, we obtain an expression for the ionic current by solving time-dependent Nernst鈥揚lanck and Poisson equations. This expression shows that after turning on an applied voltage, ions rapidly respond to the strong fields near the electrode surface, screening the field in the process. Ions subsequently translocate in the weak electric field and slowly relax within the diffusion layer. Our theoretical results help to explain the short- and long-time behavior of the ionic response found in experiments, as well as the various length scales involved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700