用户名: 密码: 验证码:
Stabilization of Iron Oxide Nanoparticles in High Sodium and Calcium Brine at High Temperatures with Adsorbed Sulfonated Copolymers
详细信息    查看全文
文摘
A series of sulfonated random and block copolymers were adsorbed on the surface of 100 nm iron oxide (IO) nanoparticles (NPs) to provide colloidal stability in extremely concentrated brine composed of 8% wt NaCl + 2% wt CaCl2 (API brine; 1.4 M NaCl + 0.2 M CaCl2) at 90 掳C. A combinatorial materials chemistry approach, which employed Ca2+-mediated adsorption of anionic acrylic acid-containing sulfonated polymers to preformed citrate-stabilized IO nanoclusters, enabled the investigation of a large number of polymer coatings. Initially a series of poly(2-methyl-2-acrylamidopropanesulfonate-co-acrylic acid) (poly(AMPS-co-AA)) (1:8 to 1:1 mol:mol), poly(styrenesulfonate-block-acrylic acid) (2.4:1 mol:mol), and poly(styrenesulfonate-alt-maleic acid) (3:1 mol:mol) copolymers were screened for solubility in API brine at 90 掳C. The ratio of AMPS to AA groups was varied to balance the requirement of colloid dispersibility at high salinity (provided by AMPS) against the need for anchoring of the polymers to the iron oxide surface (via the AA). Steric stabilization of IO NPs coated with poly(AMPS-co-AA) (1:1 mol:mol) provided colloidal stability in API brine at room temperature and 90 掳C for up to 1 month. The particles were characterized before and after coating at ambient and elevated temperatures by a variety of techniques including colloidal stability experiments, dynamic light scattering, zeta potential, and thermogravimetric analysis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700