用户名: 密码: 验证码:
pH-Dependent Transport of Metal Cations in Porous Media
详细信息    查看全文
  • 作者:Valentina Prigiobbe ; Steven L. Bryant
  • 刊名:Environmental Science & Technology
  • 出版年:2014
  • 出版时间:April 1, 2014
  • 年:2014
  • 卷:48
  • 期:7
  • 页码:3752-3759
  • 全文大小:395K
  • 年卷期:v.48,no.7(April 1, 2014)
  • ISSN:1520-5851
文摘
We study the effect of pH-dependent adsorption and hydrodynamic dispersion on cation transport through a reactive porous medium with a hydrophilic surface. We investigate how competitive adsorption between a proton and a metal (which in some situations of practical interest may also be a radionuclide) can facilitate the migration of a certain fraction of the latter. We performed laboratory experiments using a chromatographic column filled with silica beads coated with iron oxide and flooded initially with an acidic solution (pH 鈮?3) and then with an alkaline solution (pH > 7) containing either sodium, potassium, lithium, calcium, magnesium, or barium. The composition of each injected solution was chosen to represent one of two possible theoretical predictions, either a retarded shock and a fast pulse, that is, traveling at the interstitial fluid velocity, or only a retarded shock. Highly resolved breakthrough curves measured with inline ion chromatography allowed us to observe in all cases agreement with theoretical predictions, including numerous observations of a fast pulse. The fast pulse is the result of the interaction between pH-dependent adsorption and hydrodynamic dispersion and has previously been observed in systems with strontium. Here, we show the fast pulse arises also in the case of other cations allowing a generalization of the physical mechanism underlying this phenomenon and consideration of it as a new fast transport behavior. A one-dimensional reactive transport model for an incompressible fluid was developed combining surface complexation with mass conservation equations for a solute and the acidity (difference between the total proton and hydroxide concentration). In all cases, the model agrees with the measurements capturing the underlying physics of the overall transport behavior. Our results suggest that the interplay between pH-dependent adsorption and hydrodynamic dispersion can give rise to the rapid migration of metals through reactive porous media with potential effects on, for example, the performance of subsurface engineering infrastructures for pollutant containment, the mobilization of metal contaminants by brine acidified upon contact with CO2 during geologic carbon storage, and the chromatographic separation processes in industrial applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700