用户名: 密码: 验证码:
Tribochemical Mechanism of Amorphous Silica Asperities in Aqueous Environment: A Reactive Molecular Dynamics Study
详细信息    查看全文
文摘
Reactive molecular dynamics (ReaxFF) simulations are used to explore the atomic-level tribochemical mechanism of amorphous silica (a-SiO2) in a nanoscale, single-asperity contact in an aqueous environment. These sliding simulations are performed in both a phosphoric acid solution and in pure water under different normal pressures. The results show that tribochemical processes have profound consequences on tribological performance. Water molecules could help avoid direct adhesive interaction between a-SiO2 surfaces in pure water under low normal load. However, formation and rupture of interfacial siloxane bonds are obviously observed under higher normal load. In phosphoric acid solution, polymerization of phosphoric acid molecules occurs, yielding oligomers under lower load, and tribochemical reactions between the molecules and the sliding surfaces could enhance wear under higher load. The bridging oxygen atoms in silica play an important role in the formation of interfacial covalent bonds, and hydrogen is found to have a weakening effect on these bonds, resulting in the rupture during shear-related loading. This work sheds light on tribochemical reactions as a mechanism for lubrication and wear in water-based or other tribological systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700