用户名: 密码: 验证码:
Crystalline Matrix of Mesoporous TiO2 Framework for Dye-Sensitized Solar Cell Application
详细信息    查看全文
文摘
In the present study, a well-ordered columnar porous TiO2 matrix is designed via inverted triblock copolymers self-assembly and introduced as a photoanode for dye-sensitized solar cells (DSSCs). The inverted triblock copolymer, polystyrene-b-poly(ethylene oxide)-b-polystyrene, with the hydrophobic polystyrene segments at both ends of a hydrophilic poly(ethylene oxide) chain is synthesized by atom transfer radical polymerization. These reverse-featured triblock copolymers allow facile stacking to 3-dimensional (D) columnar porous matrix from 2-D porous film via hydrophobic鈥揾ydrophilic interaction. A 3-D matrix with well-ordered cylindrical pores is favorable to current flow by providing a direct electron pathway. DSSCs with a 3-D matrix of 2 渭m thickness show an enhanced photocurrent density of 8.1 mA cm鈥? and higher photoconversion efficiency of 4.23% compared with those of TiO2 nanoparticle photoelectrode under the illumination of 1 sun (AM 1.5 G 100 mW cm鈥?). For the first time, we address that a 3-D metal oxide electrode with columnar pore is demonstrated via reverse-featured triblock copolymer and analyzed with relationships between their structural features and impedance spectroscopy for DSSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700