用户名: 密码: 验证码:
Vacancies and Vacancy-Mediated Self Diffusion in Cr2O3: A First-Principles Study
详细信息    查看全文
文摘
Charged and neutral vacancies and vacancy-mediated self-diffusion in α-Cr2O3 were investigated using first-principles density functional theory (DFT) and periodic supercell formalism. The vacancy formation energies of charged defects were calculated using the electrostatic finite-size corrections to account for electrostatic interactions between supercells and the corrections for the bandgap underestimation in DFT. Calculations predict that neutral oxygen (O) vacancies are predominant in chromium (Cr)-rich conditions and Cr vacancies with −2 charge state are the dominant defects in O-rich conditions. The charge-transition levels of both O and Cr vacancies are deep within the bandgap, indicating the stability of these defects. Transport calculations indicate that vacancy-mediated diffusion along the basal plane has lower energy barriers for both O and Cr ions. The most favorable vacancy-mediated self-diffusion processes corresponds to the diffusion of Cr ion in Cr3+ charge state and O ion in O2– state, respectively. Our calculations reveal that Cr triple defects composed of Cr in octahedral interstitial sites with two adjacent Cr vacancies along the c axis have a lower formation energy compared with that of charged Cr vacancies. The formation of such triple defects facilitates Cr self-diffusion along the c axis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700