用户名: 密码: 验证码:
Coal and Biomass to Liquid Transportation Fuels: Process Synthesis and Global Optimization Strategies
详细信息    查看全文
文摘
The thermochemical conversion of coal and biomass to liquid transportation fuels from a synthesis gas intermediate is investigated using an optimization-based process synthesis framework. Two distinct types of coal (LV bituminous and coal commonly found in the province of Anhui, China) and two types of biomass (hardwood and duckweed) are considered as feedstocks. The superstructure incorporates alternative conversion pathways of synthesis gas which include methanol formation and conversion into Fischer鈥揟ropsch hydrocarbons. Methanol may be converted to gasoline or olefins, and the olefins may be subsequently converted to gasoline and distillate. A rigorous deterministic global optimization branch-and-bound framework is utilized to determine the optimal process topology that produces liquid fuels at the lowest possible cost. Economies of scale are evident as the refinery capacity increases and it is observed that the fuel ratios of the final liquid products have a significant impact on the optimal topology of the plant. The results suggest that liquid fuels production from coal and biomass can be competitive with petroleum-based processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700