用户名: 密码: 验证码:
Simple yet Versatile Synthesis of CuInSexS2鈥?i>x Quantum Dots for Sunlight Harvesting
详细信息    查看全文
文摘
Common approaches to synthesizing alloyed CuInSexS2鈥?i>x quantum dots (QDs) employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Such methods typically offer low chemical yields and only moderate emission efficiencies, particularly for selenium-rich compositions. Here we demonstrate that such hazardous and air-sensitive selenium precursors can be completely avoided by utilizing a combination of thiols and amines that is very effective at reducing and then complexing with elemental selenium to form a highly reactive selenium precursor at room temperature. The optical properties of the CuInSexS2鈥?i>x QDs synthesized by this new approach can be finely tuned for optimal sunlight harvesting through control of QD size and composition. In order to demonstrate the importance of such material tunability, we incorporate QDs into liquid-junction Gr盲tzel solar cells and study correlations between varied QD size and composition and the resulting device performance. We also investigate charge transport in films of CuInSexS2鈥?i>x QDs by incorporating them into bottom-gate field effect transistors. Such films exhibit measurable p-type conductance even without exchange of the long native surface ligands, and the film鈥檚 conductance can be improved by more than 3 orders of magnitude by replacing native ligands with shorter ethanedithiol molecules. The results of this study indicate the significant promise of CuInSexS2鈥?i>x QDs synthesized by this method for applications in photovoltaics utilizing both sensitized and p鈥?i>n junction architectures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700