用户名: 密码: 验证码:
Atomic Force Microscopy Characterization and Lithography of Cu-Ligated Mercaptoalkanoic Acid 鈥淢olecular Ruler鈥?Multilayers
详细信息    查看全文
文摘
Hybrid chemical patterning strategies that combine the sophistication of lithography with the intrinsic precision of molecular self-assembly are of broad interest for applications including nanoelectronics and bioactive surfaces. This approach is exemplified by the molecular-ruler process where the sequential deposition of mercaptoalkanoic acid molecules and coordinated metal ions is integrated with conventional lithographic techniques to fabricate registered, nanometer-scale spacings. Herein, we illustrate the capabilities of atomic force microscopy characterization and lithography to investigate the morphology, quality, and local thickness of Cu-ligated mercaptohexadecanoic acid multilayers on Au{111} substrates. These multilayers are a key component utilized in the molecular-ruler process. The rich and varied topographic features of each layer are investigated via contact-mode atomic force microscopy. Using nanoshaving, an atomic force microscopy lithographic strategy that reveals the underlying Au{111} substrate via tip-induced desorption of a molecular film, the local thicknesses of these multilayers are ascertained; these thicknesses are consistent with the anticipated heights for Cu-ligated mercaptohexadecanoic acid multilayers as well as previous ensemble surface analytical measurements. By regulating the force set point utilized during nanoshaving, the upper layer of a Cu-ligated mercaptohexadecanoic acid bilayer is removed, revealing the carboxyl moiety of the lower mercaptohexadecanoic acid layer. This selective nanoshaving demonstrates a simple and practical means to generate three-dimensional multilayers and to reveal buried chemical functionalities within metal-ligated multilayers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700