用户名: 密码: 验证码:
Molecular-Level Modeling and Simulation of Vacuum Gas Oil Hydrocracking
详细信息    查看全文
文摘
Advancing the capabilities of refinery process models requires fundamental knowledge of hydrocarbon composition and processing behavior at the molecular level. In common practice, however, the main obstacle to reaching such a level of understanding is the difficulty to characterize the molecular composition of petroleum and its derived products with current analytical methods. A different approach is through the use of hydrocarbon composition modeling techniques to derive the molecular make up of petroleum fractions, thus enabling the development of molecular reaction models. The purpose of this study is to illustrate the application of this concept to model and simulate the vacuum gas oil hydrocracking process at the molecular level. At first the analytical characterization of the feed sample is transformed into a computational mixture of hydrocarbon molecules that is consistent with the chemistry of the actual oil sample. This molecular representation is then used as input to model the chemical transformations occurring in the hydrocracking reactor. The reaction network is organized in terms of reaction families, and reactivity parameters are modeled with quantitative structure/reactivity correlations. The developed model is tuned using experimental data obtained from a bench-scale hydrocracking reactor. Simulations showed that the model reproduces the product distribution by boiling range and hydrocarbon type, relevant product properties (e.g., API gravity), and process parameters such as hydrogen consumption and hydrocarbon vaporization, over a wide range of operating conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700