用户名: 密码: 验证码:
Hollow Silicon Nanostructures via the Kirkendall Effect
详细信息    查看全文
文摘
The Kirkendall effect is a simple, novel phenomenon that may be applied for the synthesis of hollow nanostructures with designed pore structures and chemical composition. We demonstrate the use of the Kirkendall effect for silicon (Si) and germanium (Ge) nanowires (NWs) and nanoparticles (NPs) via introduction of nanoscale surface layers of SiO2 and GeO2, respectively. Depending on the reaction time, Si and Ge atoms gradually diffuse outward through the oxide layers, with pore formation in the nanostructural cores. Through the Kirkendall effect, NWs and NPs were transformed into nanotubes (NTs) and hollow NPs, respectively. The mechanism of the Kirkendall effect was studied via quantum molecular dynamics calculations. The hollow products demonstrated better electrochemical performance than their solid counterparts because the pores developed in the nanostructures resulted in lower external pressures during lithiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700