用户名: 密码: 验证码:
Structural Modulation in the High Capacity Battery Cathode Material LiFeBO3
详细信息    查看全文
文摘
The crystal structure of the promising Li-ion battery cathode material LiFeBO3 has been redetermined based on the results of single crystal X-ray diffraction data. A commensurate modulation that doubles the periodicity of the lattice in the a-axis direction is observed. When the structure of LiFeBO3 is refined in the 4-dimensional superspace group C2/c(伪0纬)00, with 伪 = 1/2 and 纬 = 0 and with lattice parameters of a = 5.1681 脜, b = 8.8687 脜, c = 10.1656 脜, and 尾 = 91.514掳, all of the disorder present in the prior C2/c structural model is eliminated and a long-range ordering of 1D chains of corner-shared LiO4 is revealed to occur as a result of cooperative displacements of Li and O atoms in the c-axis direction. Solid-state hybrid density functional theory calculations find that the modulation stabilizes the LiFeBO3 structure by 1.2 kJ/mol (12 meV/f.u.), and that the modulation disappears after delithiation to form a structurally related FeBO3 phase. The band gaps of LiFeBO3 and FeBO3 are calculated to be 3.5 and 3.3 eV, respectively. Bond valence sum maps have been used to identify and characterize the important Li conduction pathways, and suggest that the activation energies for Li diffusion will be higher in the modulated structure of LiFeBO3 than in its unmodulated analogue.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700