用户名: 密码: 验证码:
Enantiomerically Pure Trinuclear Helicates via Diastereoselective Self-Assembly and Characterization of Their Redox Chemistry
详细信息    查看全文
文摘
A tris(bipyridine) ligand 1 with two BINOL (BINOL = 2,2鈥?dihydroxy-1,1鈥?binaphthyl) groups has been prepared in two enantiomerically pure forms. This ligand undergoes completely diastereoselective self-assembly into D2-symmeteric double-stranded trinuclear helicates upon coordination to copper(I) and silver(I) ions and to D3-symmetric triple-stranded trinuclear helicates upon coordination to copper(II), zinc(II), and iron(II) ions as demonstrated by mass spectrometry, NMR and CD spectroscopy in combination with quantum chemical calculations and X-ray diffraction analysis. According to the calculations, the single diastereomers that are formed during the self-assembly process are strongly preferred compared to the next stable diastereomers. Due to this strong preference, the self-assembly of the helicates from racemic 1 proceeds in a completely narcissistic self-sorting manner with an extraordinary high degree of self-sorting that proves the power and reliability of this approach to achieve high-fidelity diastereoselective self-assembly via chiral self-sorting to get access to stereochemically well-defined nanoscaled objects. Furthermore, mass spectrometric methods including electron capture dissociation MSn experiments could be used to elucidate the redox behavior of the copper helicates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700