用户名: 密码: 验证码:
GW100: A Plane Wave Perspective for Small Molecules
详细信息    查看全文
文摘
In a recent work, van Setten and co-workers have presented a carefully converged G0W0 study of 100 closed shell molecules [ J. Chem. Theory Comput.mlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:ACS="http://namespace.acs.org/2008/acs" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xml:space="preserve"> 2015mlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:ACS="http://namespace.acs.org/2008/acs" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xml:space="preserve">, m>11m>mlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:ACS="http://namespace.acs.org/2008/acs" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xml:space="preserve">, 5665−5687]. For two different codes they found excellent agreement to within a few 10 meV if identical Gaussian basis sets were used. We inspect the same set of molecules using the projector augmented wave method and the Vienna ab initio simulation package (VASP). For the ionization potential, the basis set extrapolated plane wave results agree very well with the Gaussian basis sets, often reaching better than 50 meV agreement. In order to achieve this agreement, we correct for finite basis set errors as well as errors introduced by periodically repeated images. For positive electron affinities differences between Gaussian basis sets and VASP are slightly larger. We attribute this to larger basis set extrapolation errors for the Gaussian basis sets. For quasi particle (QP) resonances above the vacuum level, differences between VASP and Gaussian basis sets are, however, found to be substantial. This is tentatively explained by insufficient basis set convergence of the Gaussian type orbital calculations as exemplified for selected test cases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700