用户名: 密码: 验证码:
Probing Molecular Mechanisms of Self-Assembly in Metal–Organic Frameworks
详细信息    查看全文
  • 作者:Debasmita Biswal ; Peter G. Kusalik
  • 刊名:ACS Nano
  • 出版年:2017
  • 出版时间:January 24, 2017
  • 年:2017
  • 卷:11
  • 期:1
  • 页码:258-268
  • 全文大小:770K
  • ISSN:1936-086X
文摘
Metal–organic framework materials (MOFs) are a class of nanoporous materials, important to many applications (e.g., gas storage, separation), and their synthesis has received considerable attention. Yet, very little is known about the mechanisms of self-assembly of MOFs. Here, we provide molecular-level insights into the previously unexplored behavior of the self-assembly process, through molecular dynamics simulations, for an archetypal Zn-carboxylate MOF system exhibiting complex vertex topologies (e.g., paddle-wheel clusters). A key finding of this study is the characterization of a stochastic and multistage ordering process intrinsic to self-assembly of the Zn-carboxylate MOF system. A variety of transient intermediate structures consisting of various types of Zn-ion clusters and carboxylate-ligand coordination, and featuring a range of geometric arrangements, are observed during structural evolution. The general features deduced here for the mechanism of the self-assembly of this archetypal MOF system expose the complexities of the various molecular-level events that can occur during the early stages of this process spanning time scales of nano- to microseconds. More generally, we provide fundamental insights that elucidate key aspects of the early stages of the self-assembly mechanism for an important class of nanoporous materials, and of experimental studies exploring nucleation and growth processes in such materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700