用户名: 密码: 验证码:
Cell-Penetrating HIV1 TAT Peptides Float on Model Lipid Bilayers
详细信息    查看全文
文摘
Cell-penetrating peptides like the cationic HIV1 TAT peptide are able to translocate across cell membranes and to carry molecular cargoes into the cellular interior. For most of these peptides, the biophysical mechanism of the membrane translocation is still quite unknown. We analyzed HIV1 TAT peptide binding and mobility within biological model membranes. To this end, we generated neutral and anionic giant unilamellar vesicles (GUVs) containing DPPC, DOPC, and cholesterol and containing DPPC, DOPC, cholesterol, and DPPS (DOPS), respectively. First, we characterized the mobility of fluorescently labeled lipids (TR-DHPE) within liquid-ordered and liquid-disordered lipid phases by single-molecule tracking, yielding a DLO of 0.6 ± 0.05 μm2/s and a DLD of 2.5 ± 0.05 μm2/s, respectively, as a reference. Fluorescently labeled TAT peptides accumulated on neutral GUVs but bound very efficiently to anionic GUVs. Single-molecule tracking revealed that HIV1 TAT peptides move on neutral and anionic GUV surfaces with a DN,TAT of 5.3 ± 0.2 μm2/s and a DA,TAT of 3.3 ± 0.2 μm2/s, respectively. TAT peptide diffusion was faster than fluorescent lipid diffusion, and also independent of the phase state of the membrane. We concluded that TAT peptides are not incorporated into but rather floating on lipid bilayers, but they immerged deeper into the headgroup domain of anionic lipids. The diffusion constants were not dependent on the TAT concentration ranging from 150 pM to 2 μM, indicating that the peptides were not aggregated on the membrane and not forming any “carpet”.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700