用户名: 密码: 验证码:
Dual-Emission Fluorescent Silica Nanoparticle-Based Probe for Ultrasensitive Detection of Cu2+
详细信息    查看全文
文摘
An effective dual-emission fluorescent silica nanoparticle-based probe has been constructed for rapid and ultrasensitive detection of Cu2+. In this nanoprobe, a dye-doped silica core served as a reference signal, thus providing a built-in correction for environmental effects. A response dye was covalently grafted on the surface of the silica nanoparticles through a chelating reagent for Cu2+. The fluorescence of the response dye could be selectively quenched in the presence of Cu2+, accompanied by a visual orange-to-green color switch of the nanoprobe. The nanoprobe provided an effective platform for reliable detection of Cu2+ with a detection limit as low as 10 nM, which is nearly 2 脳 103 times lower than the maximum level (20 渭M) of Cu2+ in drinking water permitted by the U.S. Environmental Protection Agency (EPA). The high sensitivity was attributed to the strong chelation of Cu2+ with polyethyleneimine (PEI) and a signal amplification effect. The nanoprobe constructed by this method was very stable, enabling the rapid detection of Cu2+ in real water samples. Good linear correlations were obtained over the concentration range from 1 脳 10鈭? to 8 脳 10鈭? (R2 = 0.99) with recoveries of 103.8鈭?9.14% and 95.5鈭?5.14% for industrial wastewater and lake water, respectively. Additionally, the long-wavelength emission of the response dye can avoid the interference of the autofluorescence of the biosystems, which facilitated their applications in monitoring Cu2+ in cells. Furthermore, the nanoprobe showed a good reversibility; the fluorescence can be switched 鈥渙ff鈥?and 鈥渙n鈥?by an addition of Cu2+ and EDTA, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700