用户名: 密码: 验证码:
Controlling the Product Syngas H2:CO Ratio through Pulsed-Bias Electrochemical Reduction of CO2 on Copper
详细信息    查看全文
文摘
The electrochemical reduction of CO2 is a promising method for sustainable, carbon-neutral chemical synthesis as well as the storage of intermittent renewable energy in the form of energy-dense fuels compatible with existing infrastructure. In this work, we investigated a pulsed-bias technique for CO2 reduction on Cu, which led to a major shift in the product selectivity relative to potentiostatic electrolysis conditions. With applied voltage pulses in the millisecond time regime, syngas (CO + H2) became the only product and had a pulse-time-dependent H2:CO molar ratio, ranging from ∼32:1 to 9:16 for pulse times between 10 and 80 ms, respectively, at the same applied working potential. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) data suggested that in situ oxidation and reduction of the Cu partially caused the preference for CO formation over other carbon products on polycrystalline Cu. Significant nonfaradaic current arising from electrical double layer charging and discharging was also suspected to contribute to the desorption of key reaction intermediates and further promote CO. The results provide an electronic technique for the electrochemical production of a controllable syngas feedstock for utilization in numerous industrial applications (e.g., Fischer–Tropsch process and hydroformylation of alkenes to aldehydes).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700