用户名: 密码: 验证码:
Polyaniline Nanocoating on the Surface of Layered Li[Li0.2Co0.1Mn0.7]O2 Nanodisks and Enhanced Cyclability as a Cathode Electrode for Rechargeable Lithium-I
详细信息    查看全文
文摘
The surfaces of layer-structured Li[Li0.2Co0.1Mn0.7]O2 nanodisks were nanocoated with polyaniline and examined by SEM and TEM studies, via the chemical oxidative polymerization of aniline in an acid medium for 10 min—Mn4+ ions in the pristine lithium manganese oxides acted as oxidants. During this reaction, the crystal structure of the pristine nanodisks was retained, and the XRD patterns showed no evidence of H+ exchange with the Li+ located between the manganese oxide layers. The nanocoated polyaniline was in the low molecular weight of base states, and the majority (70%) was complexed with Li[Li0.2Co0.1Mn0.7]O2 nanodisks, as shown by UV−vis and FT-IR spectroscopic analysis. By application of nanocoated polyaniline nanodisks as the cathode material, the discharge capacity was improved by about 15%. Furthermore, the cyclability was enhanced with almost no change in discharge capacity being detected at extended cycle numbers, while that of pristine nanodisks showed a tendency to continually decrease as the number of cycles increased. Results from the present study suggest that a well-controlled polyaniline nanocoating, particularly formed with the aid of pristine metal oxides as oxidants for polymerization, can act as a potential buffer layer between electrodes and electrolytes, which makes this a promising method for the reducing/protection of continuous structural distortion that occurs during extended charge−discharge cycling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700