用户名: 密码: 验证码:
Effect of Rhodium Distribution on Thermal Stability of Nanoporous Palladium鈥揜hodium Powders
详细信息    查看全文
文摘
Powders of nanoporous palladium and palladium alloy particles are of potential value for storage of hydrogen isotopes, as long as the pores remain stable over a useful range of temperatures and chemical environments. Rhodium alloys are known to have enhanced hydrogen storage and improved thermal stability versus pure palladium. However, the distribution of rhodium on pore and particle surfaces is critical to this. Pores are more ordered and thermally stable in rhodium-rich regions. Treatment of particles at elevated temperature under reducing conditions can cause rearrangement of Rh and Pd at the surface, but not a major change in Rh distribution throughout the particle. Heating in the presence of hydrogen causes more rapid pore rearrangement than heating in vacuum subsequent to hydrogen exposure, suggesting a direct chemical influence of hydrogen on mobility of surface atoms. These results provide a clear path to future improvements in the stability of nanoporous metals in reducing atmospheres.

Keywords:

mesoporous; pore collapse; core鈭抯hell; surface restructuring; segregation; EDSSI

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700