用户名: 密码: 验证码:
Fiber Bragg Grating with Polyimide鈥揝ilica Hybrid Membrane for Accurately Monitoring Cell Growth and Temperature in a Photobioreactor
详细信息    查看全文
文摘
A microstructured fiber Bragg grating (MSFBG) was created to accurately and simultaneously monitor the cell growth of photosynthetic bacteria (PSB) Rhodopseudomonas palustris CQK 01 and the temperature in a photobioreactor. The proposed sensor was made from an FBG unit that was separated into three regions, an unperturbed region, and two etched regions with smooth surfaces. The unperturbed grating region was employed to monitor the temperature. To eliminate the effects of the liquid concentration and temperature on the biomass, a polyimide鈥搒ilica hybrid membrane was created and coated on an etched grating region to separate the liquids from the PSB; that is, this thinned region was developed to analyze the liquid concentration and temperature. Another etched grating region with a smaller diameter was used to determine the response to the temperature, biomass, and liquid concentration. In addition, two models were also presented to demonstrate accurate simultaneous measurement of the biomass and temperature. We discovered that the MSFBG sensor can rapidly and accurately determine the difference in the Bragg wavelength shifts caused by changes in the temperature, biomass, and liquid-phase concentration. The measured biomass is highly correlated with the real cell growth, with a correlation of 0.9438; the hydrogen production rate and temperature difference from metabolic heat production reached 1.97 mmol/L/h and 2.8 掳C, respectively, in the PSB culture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700