用户名: 密码: 验证码:
Predicting Electrophoretic Mobility of Tryptic Peptides for High-Throughput CZE-MS Analysis
详细信息    查看全文
文摘
A multiparametric sequence-specific model for predicting peptide electrophoretic mobility has been developed using large-scale bottom-up proteomic CE-MS data (5% (∼0.8M) acetic acid as background electrolyte). Peptide charge (Z) and size (molecular mass, M) are the two major factors determining electrophoretic mobility, in complete agreement with previous studies. The extended size of the data set (>4000 peptides) permits access to many sequence-specific factors that impact peptide mobility. The presence of acidic residues Asp and Glu near the peptide N-terminus is by far the most prominent among them. The induction effect of the side chain of N-terminal Asp reduces the basicity of the N-terminal amino group and, as hence, its charge, by ∼0.27 units, lowering mobility. The correlation of the model (R2 ∼ 0.995) indicates that the peptide separation process in CZE is relatively simple and can be predicted to a much higher precision than current RP-HPLC models. Similar to RP-HPLC prediction studies, we anticipate future developments that introduce peptide migration standards, collect larger data sets for modeling through the alignment of multiple CZE-MS acquisitions, and study of the behavior of peptides carrying post-translational modifications. The increased size of data sets will also permit investigation of the fine-scale effects of peptide secondary structure on peptide mobility. We observed that peptides with higher helical propensity tend to have higher than predicted electrophoretic mobility; the incorporation of these features into CZE migration models will require significantly larger data sets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700