用户名: 密码: 验证码:
Differential Proteomics of Urinary Exovesicles from Classical Galactosemic Patients Reveals Subclinical Kidney Insufficiency
详细信息    查看全文
  • 作者:Simon Staubach ; Murat Pekmez ; Franz-Georg Hanisch
  • 刊名:Journal of Proteome Research
  • 出版年:2016
  • 出版时间:June 3, 2016
  • 年:2016
  • 卷:15
  • 期:6
  • 页码:1754-1761
  • 全文大小:534K
  • 年卷期:0
  • ISSN:1535-3907
文摘
Classical galactosemia is caused by a nearly complete deficiency of galactose-1-phosphate uridyltransferase (GALT; EC 2.7.712), resulting in a severely impaired galactose metabolism with galactose-1-phosphate and galactitol accumulation. Even on a galactose-restricted diet, patients develop serious long-term complications of the central nervous system and ovaries that may result from chronic cell-toxic effects exerted by endogenous galactose. To address the question of whether disease-associated cellular perturbations could affect the kidney function of the patients, we performed differential proteomics of detergent-resistant membranes from urinary exovesicles. Galactosemic samples (showing drastic shifts from high-mannose to complex-type N-glycosylation on exosomal N-glycoproteins) and healthy, sex-matched controls were analyzed in quadruplex iTRAQ experiments performed in biological and technical replicates. Particularly in the female patient group, the most striking finding was a drastic increase of abundant serum (glyco)proteins, like albumin, leucine-rich α-2-glycoprotein, fetuin, immunoglobulins, prostaglandin H2 d-isomerase, and α-1-microglobulin protein (AMBP), pointing to a subclinical failure of kidney filter function in galactosemic patients and resulting in a heavy overload of exosomal membranes with adsorbed serum (glyco)proteins. Several of these proteins are connected to TBMN and IgAN, proteinuria, and renal damage. The impairment of renal protein filtration was also indicated by increased protein contents derived from extracellular matrices and lysosomes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700