用户名: 密码: 验证码:
Generalized Model of Resonant Polymer-Coated Microcantilevers in Viscous Liquid Media
详细信息    查看全文
文摘
Expressions describing the resonant frequency and quality factor of a dynamically driven, polymer-coated microcantilever in a viscous liquid medium have been obtained. These generalized formulas are used to describe the effects the operational medium and the viscoelastic coating have on the device sensitivity when used in liquid-phase chemical sensing applications. Shifts in the resonant frequency are normally assumed proportional to the mass of sorbed analyte in the sensing layer. However, the expression for the frequency shift derived in this work indicates that the frequency shift is also dependent on changes in the sensing layer’s loss and storage moduli, changes in the moment of inertia, and changes in the medium of operation’s viscosity and density. Not accounting for these factors will lead to incorrect analyte concentration predictions. The derived expressions are shown to reduce to well-known formulas found in the literature for the case of an uncoated cantilever in a viscous liquid medium and the case of a coated cantilever in air or in a vacuum. The theoretical results presented are then compared to available chemical sensor data in aqueous and viscous solutions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700