用户名: 密码: 验证码:
Polymeric Hollow Fiber Heat Exchangers: An Alternative for Lower Temperature Applications
详细信息    查看全文
  • 作者:Dimitrios M. Zarkadas and Kamalesh K. Sirkar
  • 刊名:Industrial & Engineering Chemistry Research
  • 出版年:2004
  • 出版时间:December 8, 2004
  • 年:2004
  • 卷:43
  • 期:25
  • 页码:8093 - 8106
  • 全文大小:377K
  • 年卷期:v.43,no.25(December 8, 2004)
  • ISSN:1520-5045
文摘
Because of their better chemical resistance and fouling characteristics, plastic heat exchangersare of increasing interest for lower temperature applications. However, their lower thermalperformance compared to that of metal heat exchangers has prevented their widespread useand acceptance. To overcome this constraint, polymeric hollow fiber heat exchangers (PHFHEs)are proposed as a new type of heat exchanger for lower temperature/pressure applications. Inpolypropylene-based PHFHEs, the overall heat-transfer coefficients achieved here, 647-1314and 414-642 W m-2 K-1 for the water-water and ethanol-water systems, respectively, arecomparable with accepted design values for metal shell-and-tube heat exchangers; further, for20% of our water-water runs, it was higher than any value reported for plastic heat exchangers.The extremely large surface area/volume ratio of PHFHEs makes them more efficient than metalheat exchangers. Devices less than 30 cm (1 ft) long yielded efficiencies of up to 97.5%, up to 3.7number of transfer units (NTU) and a height of a transfer unit (HTU) as low as 5 cm; the latteris 20 times less than the lower limit for shell-and-tube exchangers and 10 times less than thetypical values for plate heat exchangers. PHFHEs achieve conductance/volume ratios 3-10 timeshigher than shell-and-tube devices accompanied by low-pressure drops, as low as 1 kPa/NTU,compared to 30 kPa/NTU for metal heat exchangers. Considering the much lower cost, weight,and elimination of metal contamination, PHFHEs can substitute metal heat exchangers on boththermal performance and economical grounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700