用户名: 密码: 验证码:
Anomalous Manganese Activation of a Pyrophosphate Cathode in Sodium Ion Batteries: A Combined Experimental and Theoretical Study
详细信息    查看全文
文摘
Sodium ion batteries (SIBs) have many advantages such as the low price and abundance of sodium raw materials that are suitable for large-scale energy storage applications. Herein, we report an Mn-based pyrophosphate, Na2MnP2O7, as a new SIB cathode material. Unlike most Mn-based cathode materials, which suffer severely from sluggish kinetics, Na2MnP2O7 exhibits good electrochemical activity at 3.8 V vs Na/Na+ with a reversible capacity of 90 mAh g鈥? at room temperature. It also shows an excellent cycling and rate performance: 96% capacity retention after 30 cycles and 70% capacity retention at a c-rate increase from 0.05C to 1C. These electrochemical activities of the Mn-containing cathode material even at room temperature with relatively large particle sizes are remarkable considering an almost complete inactivity of the Li counterpart, Li2MnP2O7. Using first-principles calculations, we find that the significantly enhanced kinetics of Na2MnP2O7 is mainly due to the locally flexible accommodation of Jahn鈥揟eller distortions aided by the corner-sharing crystal structure in triclinic Na2MnP2O7. By contrast, in monoclinic Li2MnP2O7, the edge-sharing geometry causes multiple bonds to be broken and formed during charging reaction with a large degree of atomic rearrangements. We expect that the similar computational strategy to analyze the atomic rearrangements can be used to predict the kinetics behavior when exploring new cathode candidates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700