用户名: 密码: 验证码:
Atomic Level Distributed Strain within Graphene Divacancies from Bond Rotations
详细信息    查看全文
文摘
Vacancy defects play an important role in influencing the properties of graphene, and understanding their detailed atomic structure is crucial for developing accurate models to predict their impact. Divacancies (DVs) are one of the most common defects in graphene and can take three different structural forms through various sequences of bond rotations to minimize the energy. Using aberration-corrected transmission electron microscopy with monochromation of the electron source, we resolve the position of C atoms in graphene and measure the C鈥揅 bond lengths within the three DVs, enabling a map of bond strain to be generated. We show that bond rotations reduce the maximum single bond strain reached within a DV and help distribute the strain over a larger number of bonds to minimize the peak magnitude.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700