用户名: 密码: 验证码:
Probing Graphene Edges via Raman Scattering
详细信息    查看全文
文摘
We present results of a Raman scattering study from the region near the edges of n-graphene layer films. We find that a Raman band (D) located near 1344 cmp>−1p> (514.5 nm excitation) originates from a region next to the edge with an apparent width of ∼70 nm (upper bound). The D-band was found to exhibit five important characteristics: (1) a single Lorentzian component for n = 1, and four components for n = 2−4, (2) an intensity IDcosp>4p> θ, where θ is the angle between the incident polarization and the average edge direction, (3) a local scattering efficiency (per unit area) comparable to the G-band, (4) dispersive behavior (∼50 cmp>−1p>/eV for n = 1), consistent with the double resonance (DR) scattering mechanism, and (5) a scattering efficiency that is almost independent of the crystallographic orientation of the edge. High-resolution transmission electron microscope images reveal that our cleaved edges exhibit a sawtooth-like roughness of ∼3 nm (i.e., ∼20 times the C−C bond length). We propose that in the double resonance Raman scattering process the photoelectron scatters diffusely from our edges, obscuring the recently proposed strong variation in the scattering from armchair versus zigzag symmetry edges based on theoretical arguments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700