用户名: 密码: 验证码:
The Liver Connexin32 Interactome Is a Novel Plasma Membrane-Mitochondrial Signaling Nexus
详细信息    查看全文
文摘
Connexins are the structural subunits of gap junctions and act as protein platforms for signaling complexes. Little is known about tissue-specific connexin signaling nexuses, given significant challenges associated with affinity-purifying endogenous channel complexes to the level required for interaction analyses. Here, we used multiple subcellular fractionation techniques to isolate connexin32-enriched membrane microdomains from murine liver. We show, for the first time, that connexin32 localizes to both the plasma membrane and inner mitochondrial membrane of hepatocytes. Using a combination of immunoprecipitation-high throughput mass spectrometry, reciprocal co-IP, and subcellular fractionation methodologies, we report a novel interactome validated using null mutant controls. Eighteen connexin32 interacting proteins were identified. The majority represent resident mitochondrial proteins, a minority represent plasma membrane, endoplasmic reticulum, or cytoplasmic partners. In particular, connexin32 interacts with connexin26 and the mitochondrial protein, sideroflexin-1, at the plasma membrane. Connexin32 interaction enhances connexin26 stability. Converging bioinformatic, biochemical, and confocal analyses support a role for connexin32 in transiently tethering mitochondria to connexin32-enriched plasma membrane microdomains through interaction with proteins in the outer mitochondrial membrane, including sideroflexin-1. Complex formation increases the pool of sideroflexin-1 that is present at the plasma membrane. Together, these data identify a novel plasma membrane/mitochondrial signaling nexus in the connexin32 interactome.

Keywords:

gap junction; connexin; connexin32; connexin26; mitochondria; interactome; sideroflexin; mass spectrometry; immunoprecipitation; inner mitochondrial membrane

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700