用户名: 密码: 验证码:
Coordination Chemistry and Reactivity of Bis(aldimino)pyridine Nickel Complexes in Four Different Oxidation States
详细信息    查看全文
文摘
A series of nickel complexes with potentially redox active bis(aldimino)pyridine ligands [NNN] ([NNN] = 1,1′-(pyridine-2,6-diyl)bis(N-arylmethanimine), where aryl = 2,6-diisopropylphenyl, mesityl, 4-methoxyphenyl, 4-trifluoromethylphenyl, and 3,5-bis(trifluoromethyl)phenyl) were synthesized, and their properties and reactivities were investigated as a function of the overall oxidation state of the system. (Ni[NNN])2+ complexes of ligands featuring bulky electron-rich substituents (1a-Br2 and 1b-Br2, [NNN] = 1,1′-(pyridine-2,6-diyl)bis(N-(2,6-diisopropylphenyl)methanimine) and 1,1′-(pyridine-2,6-diyl)bis(N-mesitylmethanimine), respectively) demonstrated five electrochemical reduction events, the first three of which were quasi-reversible. In contrast, only two quasi-reversible reductions were observed for the less bulky and electron-deficient N-aryl substituents 4-(trifluoromethyl)phenyl and 3,5-bis(trifluoromethyl)phenyl. Chemical reduction of 1a-Br2 and 1b-Br2 with 1 equiv of KC8 or CoCp*2 forms (Ni[NNN])+ complexes of the general formula Ni[NNN]Br (2a-Br and 2b-Br). Structural, spectroscopic, and theoretical studies reveal that these complexes feature significant unpaired spin density on the metal, consistent with “nickel(I)” character. This behavior is in contrast with previously reported bis(ketimino)pyridine systems, in which at the (Ni[NNN])+ state the unpaired electron resided exclusively in the ligand. Further reduction forms a series of (Ni[NNN])0 complexes, in which all of the potentially tridentate [NNN] ligands bind via only one iminopyridine unit; the second arm is left unbound in most complexes. Variable temperature NMR spectroscopy demonstrates that bound and unbound arms exchange via a postulated tridentate intermediate. Electrochemical reduction, via three sequential one-electron reductions, of 1a-Br2 and 1b-Br2 in the presence of CO2/H+ forms an active catalyst for H2 evolution at a glassy-carbon electrode surface, again emphasizing the unique redox chemistry of the bulky bis(aldimino)pyridine nickel complexes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700