用户名: 密码: 验证码:
Self-Assembling of Zinc Phthalocyanines on ZnO (101̅0) Surface through Multiple Time Scales
详细信息    查看全文
文摘
We adopt a hierarchic combination of theoretical methods to study the assembling of zinc phthalocyanines (ZnPcs) on a ZnO (101̅0) surface through multiple time scales. Atomistic simulations, such as model potential molecular dynamics and metadynamics, are used to study the energetics and short time evolution (up to ∼100 ns) of small ZnPc aggregates. The stability and the lifetime of large clusters is then studied by means of an atomistically informed coarse-grained model using classical molecular dynamics. Finally, the macroscopic time scale clustering phenomenon is studied by Metropolis Monte Carlo algorithms as a function of temperature and surface coverage. We provide evidence that at room temperature the aggregation is likely to occur at sufficiently high coverage, and we characterize the nature, morphology, and lifetime of ZnPc’s clusters. We identify the molecular stripes oriented along [010] crystallographic directions as the most energetically stable aggregates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700