用户名: 密码: 验证码:
Synthesis of Crystalline-Phase Silica-Based Calcium Phosphonate Nanomaterials and Their Transport in Carbonate and Sandstone Porous Media
详细信息    查看全文
文摘
Phosphonates are widely used scale inhibitors in oilfields for scale control. In this study, crystalline-phase calcium phosphonate nanomaterials were prepared from amorphous silica-templated calcium phosphonate precipitates that were matured into crystalline phases by a simple diafiltration process. The crystalline solids were further dispersed into a surfactant solution to form a nanomaterial suspension (nanofluid) by ultrasonic treatment to expand their use in the delivery of phosphonate inhibitors into formation core materials for scale control. The physical and chemical properties of the synthesized crystalline nanomaterials were characterized by chemical analysis, electron microscopy, X-ray diffraction, infrared microscopy, and thermogravimetric analysis. The transport of the synthesized nanofluids through calcite and sandstone media was investigated using laboratory column breakthrough experiments. The nanofluids were transported through these media at different breakthrough levels. The experimental transport data were correlated using an advection鈭抎iffusion equation, as well as colloid filtration theory, with emphasis on the effect of flow velocity on the particle transport. The maximum transport distance of the nanomaterials in porous media was estimated based on the flow velocity and the particle attachment efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700