用户名: 密码: 验证码:
Geometric and Electronic Structures as well as Thermodynamic Stability of Hexyl-Modified Silicon Nanosheet
详细信息    查看全文
文摘
The successful synthesis and outstanding properties of graphene have promoted strong interest in studying hypothetical graphene-like silicon sheet (silicene). Very recently, 2D silicon nanosheet (Si-NS) stabilized by hexyl groups was reported in experiment. We here present an atomic-level investigation of the geometric stability and electronic properties of Si-NS by density functional calculations and molecular dynamics simulations. The most stable structure of the hexyl-modified Si-NS corresponds to the one in which the hexyl groups are regularly attached to both sides of the sheet, with the periodicity of the hexyl groups on the sheet being 7.17 脜, in good agreement with the experimental value of 7.1 脜. The electrostatic repulsion effect of the hexyl groups could be an important reason for the favorable structure. The electronic structure of the hexyl-modified Si-NS shows a direct band gap that is not sensitive to the length of the alkyl group but sensitive to the strain effect, which can be used to tune the gap continuously within the whole strain range we considered. Finally, both the first-principles and the force-field-based molecular dynamics simulations show that the most stable structure of the hexyl-modified Si-NS could maintain its geometric configuration up to 1000 K.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700