用户名: 密码: 验证码:
Toward High Energy Resolution in CsSrI3/Eu2+ Scintillating Crystals: Effects of Off-Stoichiometry and Eu2+ Concentration
详细信息    查看全文
文摘
CsSrI3/Eu2+ has very promising scintillation properties for gamma-ray spectroscopy applications, but it has proven difficult to grow high quality single crystals in large sizes. This paper reports a composition-engineering strategy, in this case a combination of off-stoichiometric melts and Eu2+ concentration optimization, to obtain large-size CsSrI3/Eu2+ crystals with excellent energy resolution. Crystals of a series of off-stoichiometric compositions, Cs(1+x)(Sr,Eu)(1–x)I(3–x) (x = 0, 0.05, 0.06, and 0.1), were grown by the Bridgman method. The Cs1.06Sr0.94I2.94/Eu2+ single crystal has the highest optical transmittance between 450 and 800 nm. Cs1.06Sr0.94I2.94 single crystals doped with 0.5, 1, 3, 5, and 7 mol % Eu2+ ions were also grown by the Bridgman method. The effects of Eu2+ concentration on the phase purity and optical and scintillation properties were studied. X-ray diffraction patterns confirmed the phase purity of all samples with the exception of a hydrate phase formed during measurement. Increasing Eu2+ concentration leads to longer decay components due to the effect of self-absorption. An unexpected relationship was found between the Eu2+ concentration and the appearance of two photopeaks in a pulse height spectrum acquired under a single gamma-ray energy of 662 keV irradiation. The origins of this phenomenon are proposed from experimental insights. The optimal composition we developed achieved an excellent energy resolution of 3.4% for ϕ22 mm × 2 mm, 3.9% for ϕ22 mm × 15 mm, and 4.1% for ϕ22 mm × 19 mm at 662 keV. The results of this paper lead to a better understanding of the effects of composition-engineering in optimization of nonstoichiometric scintillator compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700