用户名: 密码: 验证码:
Global Analysis of Secreted Proteins and Glycoproteins in Saccharomyces cerevisiae
详细信息    查看全文
  • 作者:Johanna M. Smeekens ; Haopeng Xiao ; Ronghu Wu
  • 刊名:Journal of Proteome Research
  • 出版年:2017
  • 出版时间:February 3, 2017
  • 年:2017
  • 卷:16
  • 期:2
  • 页码:1039-1049
  • 全文大小:562K
  • ISSN:1535-3907
文摘
Protein secretion is essential for numerous cellular activities, and secreted proteins in bodily fluids are a promising and noninvasive source of biomarkers for disease detection. Systematic analysis of secreted proteins and glycoproteins will provide insight into protein function and cellular activities. Yeast (Saccharomyces cerevisiae) is an excellent model system for eukaryotic cells, but global analysis of secreted proteins and glycoproteins in yeast is challenging due to the low abundances of secreted proteins and contamination from high-abundance intracellular proteins. Here, by using mild separation of secreted proteins from cells, we comprehensively identified and quantified secreted proteins and glycoproteins through inhibition of glycosylation and mass spectrometry-based proteomics. In biological triplicate experiments, 245 secreted proteins were identified, and comparison with previous experimental and computational results demonstrated that many identified proteins were located in the extracellular space. Most quantified secreted proteins were down-regulated from cells treated with an N-glycosylation inhibitor (tunicamycin). The quantitative results strongly suggest that the secretion of these down-regulated proteins was regulated by glycosylation, while the secretion of proteins with minimal abundance changes was contrarily irrelevant to protein glycosylation, likely being secreted through nonclassical pathways. Glycoproteins in the yeast secretome were globally analyzed for the first time. A total of 27 proteins were quantified in at least two protein and glycosylation triplicate experiments, and all except one were down-regulated under N-glycosylation inhibition, which is solid experimental evidence to further demonstrate that the secretion of these proteins is regulated by their glycosylation. These results provide valuable insight into protein secretion, which will further advance protein secretion and disease studies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700