用户名: 密码: 验证码:
Measuring Ligand-Dependent Transport in Nanopatterned PbS Colloidal Quantum Dot Arrays Using Charge Sensing
详细信息    查看全文
文摘
Colloidal quantum dot arrays with long organic ligands have better packing order than those with short ligands but are highly resistive, making low-bias conductance measurements impossible with conventional two-probe techniques. We use an integrated charge sensor to study transport in weakly coupled arrays in the low-bias regime, and we nanopattern the arrays to minimize packing disorder. We present the temperature and field dependence of the resistance for nanopatterned oleic-acid and n-butylamine-capped PbS arrays, measuring resistances as high as 1018 惟. We find that the conduction mechanism changes from nearest neighbor hopping in oleic-acid-capped PbS dots to Mott鈥檚 variable range hopping in n-butylamine capped PbS dots. Our results can be understood in terms of a change in the interdot coupling strength or a change in density of trap states and highlight the importance of the capping ligand on charge transport through colloidal quantum dot arrays.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700